Графический метод решения задач линейного программирования

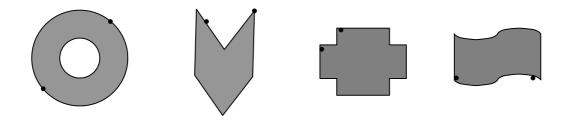
• Множество точек S называется выпуклым, если наряду с любыми двумя точками, принадлежащими данному множеству, оно содержит и отрезок прямой, их соединяющий.

Определение (общий случай)

• Множество точек S называется выпуклым, если наряду с любыми двумя точками, принадлежащими данному множеству, оно содержит и их произвольную выпуклую линейную комбинацию.

Выпуклые множества точек

Невыпуклые множества



• Для любого выпуклого множества точек S, точка P множества называется \mathbf{j} жетремальной точкой, если любой отрезок, принадлежащий S, содержит точку P в качестве конечной точки данного отрезка.

Экстремальные точки часто называют угловыми точками.

Оптимальное решение задачи ЛП находится в одной из экстремальных (угловых) точек.

Множество допустимых значений задачи ЛП определяется областью допустимых значений задачи.

Множество допустимых решений задачи ЛП определяется числом угловых точек выпуклого многогранника, определяющего данную область.

Графическое решение задачи с двумя переменными

$$\max Z = 3x_1 + 2x_2$$

$$2x_1 + x_2 \le 100$$

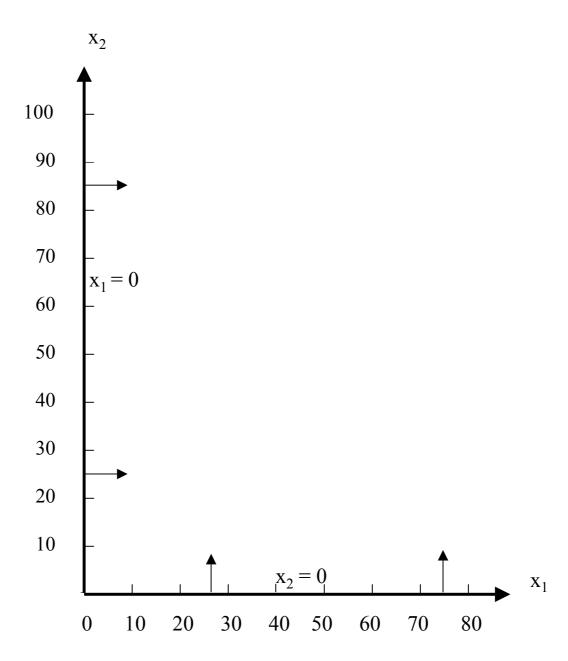
$$x_1 + x_2 \le 80$$

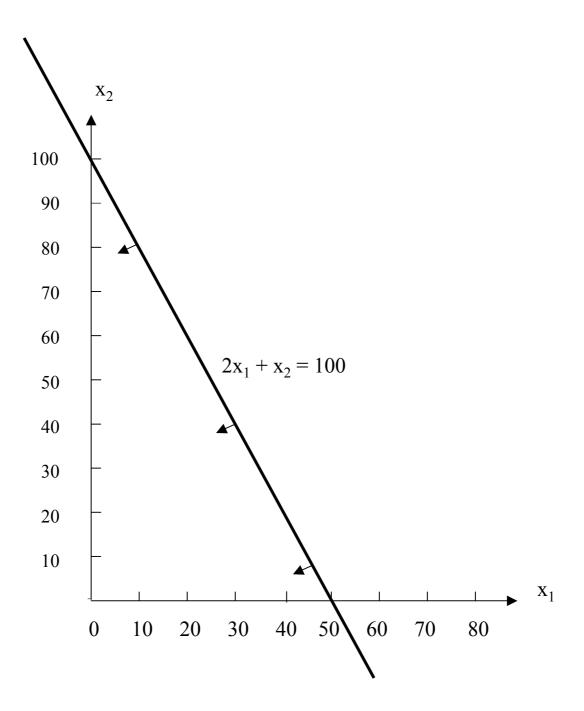
$$x_1 \le 40$$

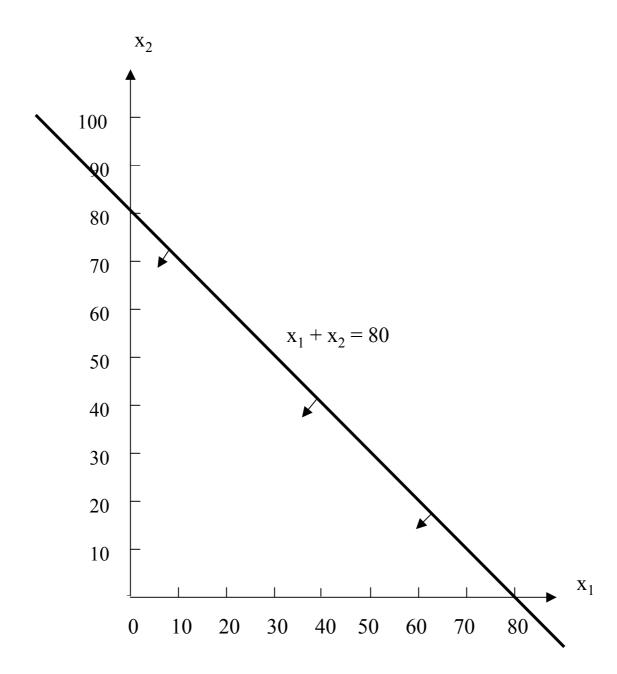
$$x_1 \ge 0$$

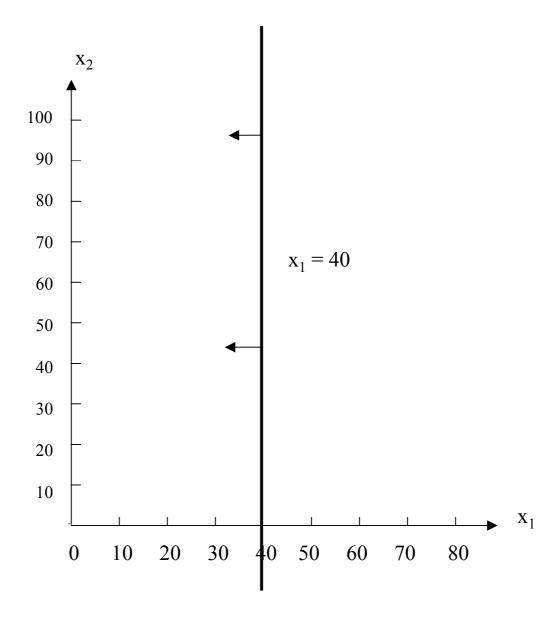
$$x_2 \ge 0$$

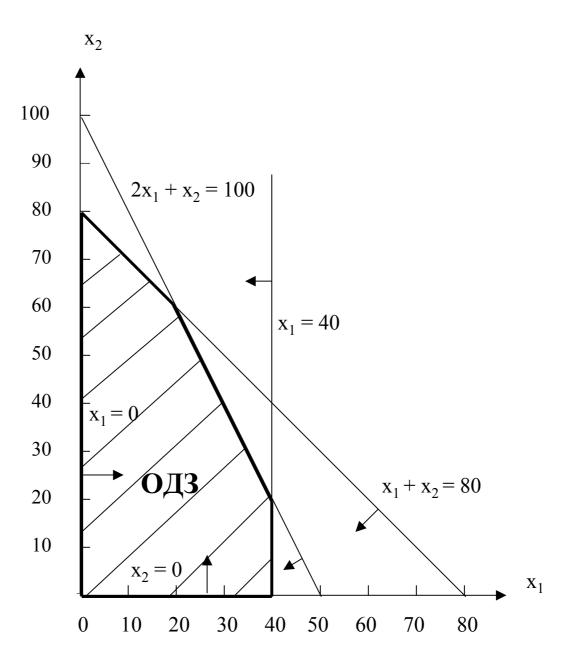
Построение ОДЗ









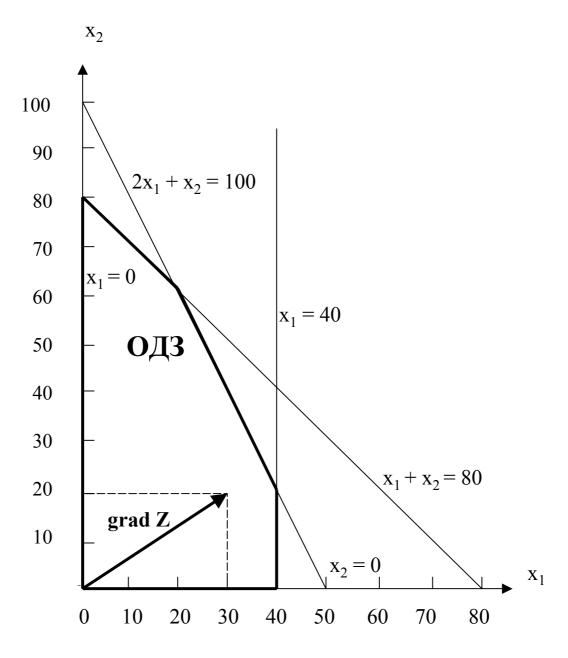


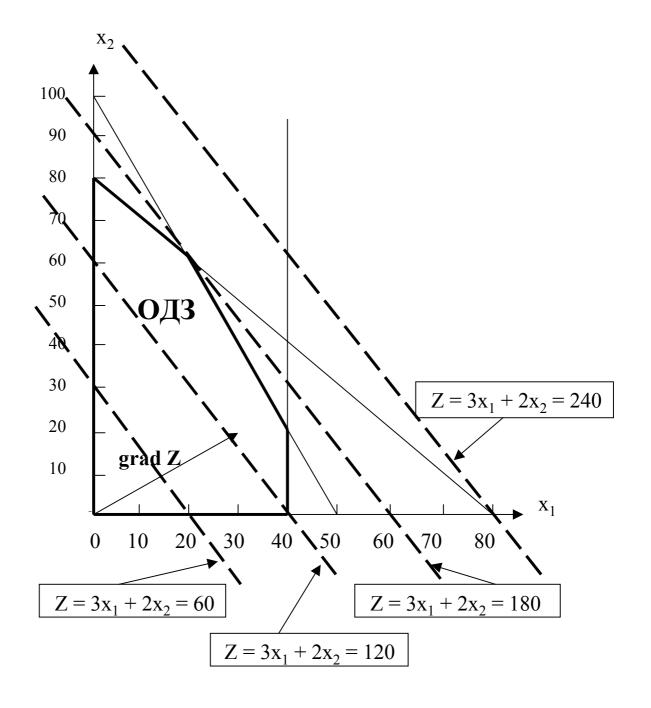
• Градиент – это вектор, который показывает направление возрастания целевой функции.

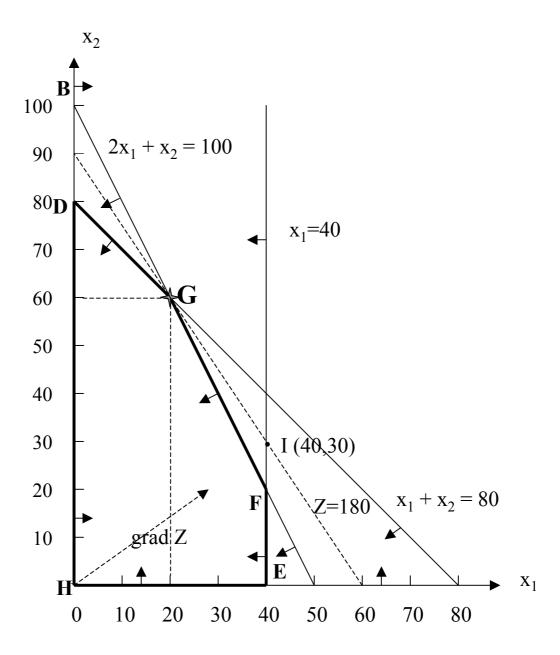
grad
$$Z = \left(\frac{dZ}{dx_1}, \frac{dZ}{dx_2}, \dots, \frac{dZ}{dx_n}\right)$$

- **Изоцель** линия на графике, описывающая поведение целевой функции.
- Все точки, принадлежащие изоцели, приносят одно и то же значение целевой функции.

$$3x_1 + 2x_2 = constant$$







Оптимальное решение

G(20, 60) — оптимальная точка

$$x_1 = 20, x_2 = 60,$$

$$Z_{\text{max}} = 180$$

- Ограничение называется связующим, если в результате подстановки в него значений оптимальной точки левая его часть равна правой части, т.е. Ограничение выполняется как строгое равенство.
- Например:

$$2x_1 + x_2 \le 100 \implies 2 \times 20 + 60 = 100$$

 $x_1 + x_2 \le 80 \implies 20 + 60 = 80$

• Ограничение является **несвязующим**, если в результате подстановки в него значений оптимальной точки левая его часть не равна правой части, т.е. Ограничение выполняется как строгое неравенство.

Например:

$$x_1 \le 40 \implies x_1 = 20 < 40$$

Исходы решения задачи ЛП

Единственное решение

Множество решений (альтернативный оптимум)

Неограниченное решение

Недопустимое решение

Альтернативный оптимум

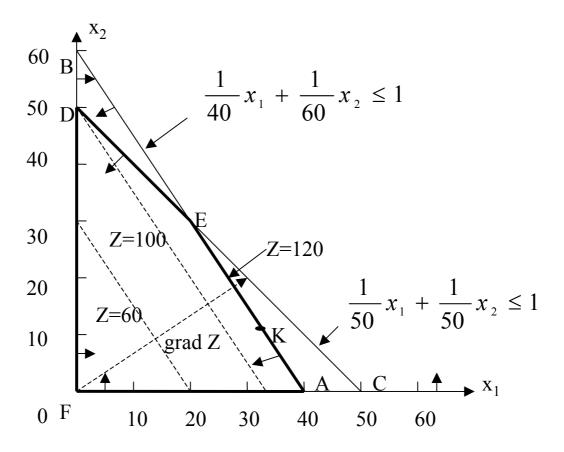
Имеется модель:

$$\max Z = 3x_1 + 2x_2$$

$$\frac{1}{40}x_1 + \frac{1}{60}x_2 \le 1$$

$$\frac{1}{50}x_1 + \frac{1}{50}x_2 \le 1$$

$$x_1, x_2 \ge 0$$



Значения переменных в точке К

$$K(x_1^3, x_2^3) = \alpha \times A(x_1^1, x_2^1) + (1 - \alpha) \times E(x_1^2, x_2^2)$$

$$0 \le \alpha \le 1$$

Неограниченная задача ЛП

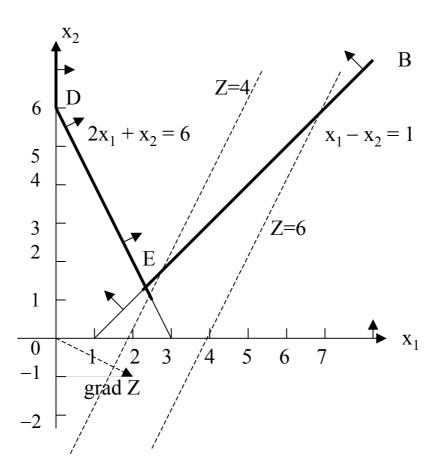
• Имеется модель

$$\max Z = 2x_{1} - x_{2}$$

$$x_{1} - x_{2} \le 1$$

$$2x_{1} + x_{2} \ge 6$$

$$x_{1}, \quad x_{2} \ge 0$$



Недопустимая задача ЛП

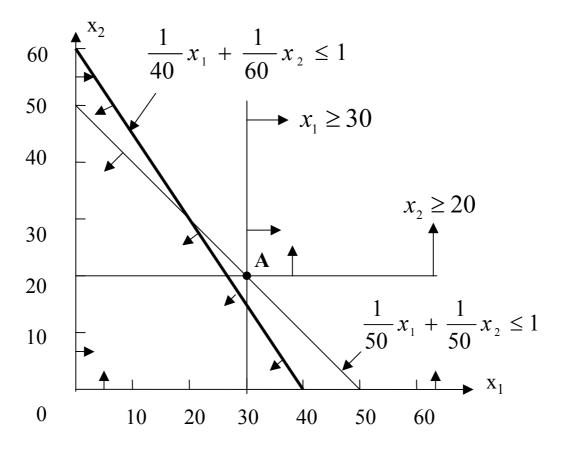
Имеется модель:

$$\max Z = 3x_1 + 2x_2$$

$$\frac{1}{40}x_1 + \frac{1}{60}x_2 \le 1$$

$$\frac{1}{50}x_1 + \frac{1}{50}x_2 \le 1$$

$$x_1 \ge 30 \qquad x_2 \ge 20$$

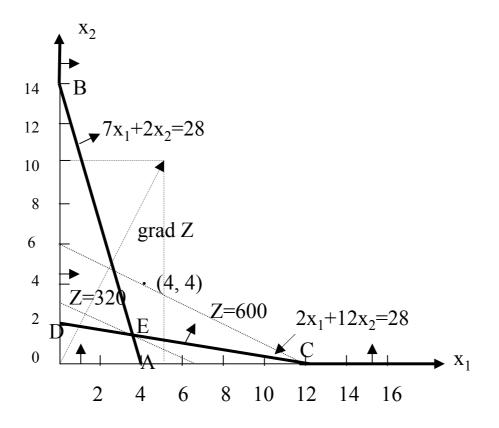


Графическое решение задачи на минимум ЦФ

Имеется модель:

min
$$Z = 50x_1 + 100x_2$$

 $7x_1 + 2x_2 \ge 28$
 $2x_1 + 12x_2 \ge 24$
 $x_1, x_2 \ge 0$



$$x_1$$
=3.6, x_2 =1.4
 Z_{min} =50×3.6+100×1.4=320