Тема 2

Симплекс метод

Размышления на тему канонической формы модели линейного программирования

Определение термина «канонический»

С. И. Ожегов

1. Соответствующий канону

2. Принятый за образец, твердо установленный

Каноническая задача ЛП по Дж. Данцигу

Найти такие

$$x_1 \ge 0, x_2 \ge 0, ..., x_n \ge 0$$

и min Z ,

которые удовлетворяют

соотношениям:

• Стандартная форма задачи ЛП по Данцигу – это такая задача, целью решения которой является определение таких неотрицательных интенсивностей технологических процессов, при которых количества каждого ингредиента удовлетворяют уравнениям материального баланса, а величина выигрыша максимальна

Гарвей Вагнер:

В настоящее время существует большое разнообразие канонических форм, находящих практическое применение

• Каноническая форма 1:

Максимизировать

$$\sum_{j=1}^{n} C_{j} X_{j}$$

при наличии ограничений

$$\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i}, \quad i = \overline{1,m}$$

$$x_j \ge 0$$
, $j = 1$, n

• Каноническая форма 2:

Минимизировать

$$\sum_{j=1}^{n} C_{j} X_{j}$$

при наличии ограничений

$$\sum_{j=1}^{n} a_{ij} x_{j} = b_{i}, \ b_{i} \ge 0, \ i = \overline{1,m}$$

$$x_j \ge 0$$
, $j=1$, n

Б. Банди:

Стандартная форма – целевая функция должна быть минимизирована, а все ограничения должны быть заданы в виде равенств с неотрицательными переменными

Д.Б. Юдин, Е.Г. Гольштейн:

В определении канонической формы задачи ЛП не выдвигается требование наличия определенного типа критерия задачи ЛП, а также выделения переменных.

Найти максимум (минимум) линейной формы

$$L = \widetilde{c}_1 x_1 + \ldots + \widetilde{c}_n x_n$$

при условиях

И.Л.Калихман:

ставит требование определенного вида критерия в канонической форме задачи ЛП: найти совокупность ___ значений n переменных \mathcal{X}_k , $k=\overline{1,n}$ удовлетворяющих системе m уравнений

$$\begin{vmatrix}
a_{11}x_1 + \dots + a_{1n}x_n = a_{10} \\
\dots \\
a_{m1}x_1 + \dots + a_{mn}x_n = a_{m0}
\end{vmatrix}$$

$$x_{k} \ge 0 \qquad (k = 1, 2, \dots, n)$$

для которых целевая функция

$$Z = c_1 x_1 + \ldots + c_n x_n$$

достигает максимума

В учебном пособии

Ермольев Д.Н., Ляшко И.И., Михалевич В.С., Тюптя В.И. Математические методы исследования операций. – К.: Вища школа, 1979. – 312 с.

под канонической формой модели понимается такая модель, в которой правые части ограничений неотрицательны и в каждом уравнении выделена переменная с коэффициентом 1 и с коэффициентом 0 в остальных уравнениях.

Стандартная форма предполагает только наличие равенств в ограничениях

Стандартная форма задачи линейного программирования

предусматривает достижение любого вида критерия

(max или min)

на заданной системе ограничений в виде <u>равенств</u>, при неотрицательных неизвестных принятия решений.

Стандартная форма представления задач линейного программирования

Целевая функция:

$$\max(\min) Z = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n$$

Ограничения:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots \\ a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m$$

<u>Ограничения на знак переменных:</u> $x_j \ge 0$, $(j = \overline{1, n})$

Исходная модель:

$$\max Z = 3x_1 + 2x_2$$

$$\begin{array}{ccc} 2x_1 + x_2 & \leq 100 \\ x_1 + x_2 & \leq 80 \\ x_1 & \leq 40 \\ x_1 & \geq 0 \\ x_2 & \geq 0 \end{array}$$

Стандартная форма:

$$\max Z = 3x_1 + 2x_2 + 0S_1 + 0S_2 + 0S_3$$

$$2x_1 + x_2 + S_1 = 100$$

$$x_1 + x_2 + S_2 = 80$$

$$x_1 + S_3 = 40$$

$$x_1, x_2, S_1, S_2, S_3 \ge 0$$

$$S_i \ge 0$$
 — дополняющая переменная ($i = 1,2,3$)

$$S_1 = 100 - 2 x_1 - x_2$$

Исходная модель:

$$\min Z = 50x_1 + 20x_2 + 30x_3 + 80x_4$$

$$400x_1 + 200x_2 + 150x_3 + 500x_4 \ge 500$$

$$3x_1 + 2x_2 \ge 6$$

$$2x_1 + 2x_2 + 4x_3 + 4x_4 \ge 10$$

$$2x_1 + 4x_2 + x_3 + 5x_4 \ge 8$$

$$x_i \ge 0, \quad j = \overline{1,4}$$

Стандартная форма:

$$\min Z = 50x_1 + 20x_2 + 30x_3 + 80x_4 + 0e_1 + 0e_2 + 0e_3 + 0e_4$$

$$400x_1 + 200x_2 + 150x_3 + 500x_4 - e_1 = 500$$

$$3x_1 + 2x_2 - e_2 = 6$$

$$2x_1 + 2x_2 + 4x_3 + 4x_4 - e_3 = 10$$

$$2x_1 + 4x_2 + x_3 + 5x_4 - e_4 = 8$$

$$x_j \ge 0, \qquad e_i \ge 0, \qquad i = \overline{1,4}$$

$$e_i \ge 0$$
 – избыточная переменная ($i = 1,2,3,4$)

$$e_1 = 400x_1 + 200x_2 + 150x_3 + 500x_4 - 500$$

Мебельная фабрика может производить письменные столы, кухонные столы и стулья. При изготовлении мебели используются древесина и труд рабочих на столярном и отделочном участках. Необходимое количество ресурсов для выпуска столов и стульев приведено в таблице:

Pecypc	Письменный стол	Кухонный стол	Стул	
Древесина	8	6	1	
Отделочные работы	4	2	1.5	
Столярные работы	2	1.5	0.5	

В распоряжении фабрики имеется 48 кв. м древесины, 20 часов времени на участке отделки и 8 часов на столярном участке. Известно также, что потребность в письменных столах и стульях неограниченна. Однако не более 5 кухонных столов может быть продано ежедневно. Цены реализации продукции следующие: письменный cmon - 60 грн., кухонный cmon - 30 грн., cmyn - 20грн.

Учитывая, что все ресурсы уже куплены, мебельная фабрика хотела бы использовать их наилучшим образом, приносящим наивысший доход.

Переменные задачи:

 x_1 — количество производимых ежедневно письменных столов, шт.;

 x_2 — количество производимых ежедневно кухонных столов, шт.;

 x_3 — количество производимых ежедневно стульев, шт.

Математическая модель:

$$\max Z = 60x_1 + 30x_2 + 20x_3$$

$$8x_1 + 6x_2 + x_3 \leq 48$$

$$4x_1 + 2x_2 + 1.5x_3 \leq 20$$

$$2x_1 + 1.5x_2 + 0.5x_3 \leq 8$$

$$x_2 \leq 5$$

$$x_1, x_2, x_3 \geq 0$$

Стандартная форма:

$$\max Z = 60x_1 + 30x_2 + 20x_3 + 0S_1 + 0S_2 + 0S_3 + 0S_4$$

$$8x_1 + 6x_2 + x_3 + S_1 = 48$$

$$4x_1 + 2x_2 + 1.5x_3 + S_2 = 20$$

$$2x_1 + 1.5x_2 + 0.5x_3 + S_3 = 8$$

$$x_2 + S_4 = 5$$

$$x_1, x_2, x_3, S_1, S_2, S_3, S_4 \ge 0$$

Определение

Базисное решение системы Ax=b получается путем приравнивания к нулю n-m переменных и нахождения значений для оставшихся т переменных.

Приравнивание к нулю n-m переменных приносит единственное решение оставшимся т переменным. Иначе, столбцы оставшихся переменных являются линейно независимыми.

Определение

Любое базисное решение системы уравнений Ax=b, у которого все переменные неотрицательны, является базисным допустимым решением

$$x_1 + x_2 = 3$$
 $-x_2 + x_3 = -1$

Базисные решения:
$$x_1=3, x_2=0, x_3=-1$$
 $x_1=2, x_2=1, x_3=0$ $x_1=0, x_2=3, x_3=2$

Теорема

Область допустимых значений любой задачи линейного программирования— выпуклое множество точек.

Если задача линейного программирования имеет оптимальное решение, то в области допустимых значений должна находиться экстремальная (угловая) точка, которая является оптимальной.

Теорема

любой задачи линейного Для программирования существует единственная экстремальная (угловая) точка в области допустимых значений, которая соответствует базисному допустимому решению. По крайней мере, одно допустимое решение соответствует каждой экстремальной точке.

Базисные переменные:

$$BV = \{S_1, S_2, S_3, S_4\}$$

$$S_1 = 48$$
, $S_2 = 20$, $S_3 = 8$, $S_4 = 5$

Небазисные переменные:

$$NBV = \{x_1, x_2, x_3\}$$

$$x_1 = 0, x_2 = 0, x_3 = 0$$

$$Z = 60x_1 + 30x_2 + 20x_3 = 0$$

Выбор переменной, входящей в базис

$$\max Z = 60x_1 + 30x_2 + 20x_3 + 0S_1 + 0S_2 + 0S_3 + 0S_4$$

$$x_1 = 1 \Rightarrow Z = 60$$

$$x_2 = 1 \Rightarrow Z = 30$$

$$x_3 = 1 \Rightarrow Z = 20$$

Запись целевой функции в симплексной таблице

$$Z - 60x_1 - 30x_2 - 20x_3 - 0S_1 - 0S_2 - 0S_3 - 0S_4 = 0$$

Б А		1	\mathbf{x}_1	\mathbf{x}_2	X_3	S_1	S_2	S_3	S_4	
3 И С	c_j	b_i	60	30	20	0	0	0	0	C.O.
S_1	0	48	8	6	1	1	0	0	0	
S_2	0	20	4	2	1.5	0	1	0	0	
S_3	0	8	2	1.5	0.5	0	0	1	0	
S_4	0	5	0	1	0	0	0	0	1	
Z - c _j	I	0	-60	-30	-20	0	0	0	0	

Вопросы:

С каким значением новая переменная будет присутствовать в базисе?

Какая из переменных покинет базис?

$$8x_1 + S_1 = 48$$

 $4x_1 + S_2 = 20$
 $2x_1 + S_3 = 8$
 $S_4 = 5$

$$S_1 = 48 - 8x_1$$
 = 0 \Rightarrow $x_1 = 6$, $S_2 = 20 - 4x_1$ = 0 \Rightarrow $x_1 = 5$, $S_3 = 8 - 2x_1$ = 0 \Rightarrow $x_1 = 4$, $S_4 = 5 - 0x_1$ \neq 0 ни при каком x_1

Правило нахождения переменной, выходящей из базиса и определения значения вновь вводимой в базис переменной:

Для того чтобы определить переменную, покидающую базис, необходимо рассчитать отношения правых частей ограничений к положительным коэффициентам в столбце входящей в базис переменной и выбрать наименьшее из них. Соответствующая минимальному отношению переменная покинет базис.

Само минимальное отношение и показывает значение переменной, входящей в базис.

$$x_1 = \min\left\{\frac{48}{8}; \frac{20}{4}; \frac{8}{2}\right\} = 4$$

Симплексное отношение

правая часть ограничения положительный элемент в разрешающем столбце

• Минимальное симплексное отношение соответствует переменной, покидающей базис

D		U	_
- 12331	nemami	шии с	толбец
1 45	pemaioi	щии	толосц

Б А		1	\mathbf{x}_1	X ₂	X ₃	S_1	S_2	S_3	S_4	
3 И С	c _j	b_i	60	30	20	0	0	0	0	C.O.
S_1	0	48	8	6	1	1	0	0	0	6
S_2	0	20	4	2	1.5	0	1	0	0	5
S_3	0	8	2	1.5	0.5	0	0	1	0	4
S_4	0	5	0	7	0	0	0	0	1	
Z - c _j	-	0	-60	-30	- 20	0	0	0	0	

Разрешающая строка

Разрешающий элемент

Переход от одного допустимого базисного решения к другому носит название итерации.

Каждая итерация симплекс метода предполагает:

- 1) Получение единицы на месте разрешающего элемента;
- 2) Получение нулей для всех остальных элементов разрешающего столбца.

Б А 3 И	c_{j}	b_{i}	60	30	x ₃ 20	S_1	S_2	S_3	S_4	C.O.
S_1	0	16	0	0	-1	1	0	-4	0	_
S_2	0	4	0	-1	0.5	0	1	-2	0	8
\mathbf{x}_1	60	4	1	0.75	0.25	0	0	0.5	0	16
S_4	0	5	0	1	0	0	0	0	1	
Z - c _j	-	240	0	15	-5	0	0	30	0	

Текущий базис

BV=
$$\{S_1, S_2, x_1, S_4\};$$

 $S_1 = 16;$
 $S_2 = 4;$
 $x_1 = 4;$
 $S_4 = 5;$
NBV= $\{x_2, x_3, S_3\};$
 $Z=240$

Б А 3 И	c_{j}	b_{i}	60	30	20	S_1	S_2	S_3	S_4	C.O.
S_1	0	24	0	-2	0	1	2	-8	0	
X_3	20	8	0	-2	1	0	2	-4	0	8
\mathbf{x}_1	60	2	1	1.25	0	0	-0.5	1.5	0	16
S_4	0	5	0	1	0	0	0	0	1	
Z - c _j	-	280	0	5	0	0	10	10	0	

Оптимальное решение

BV=
$$\{S_1, x_3, x_1, S_4\};$$

 $S_1 = 24;$
 $x_3 = 8;$
 $x_1 = 2;$
 $S_4 = 5$
NBV= $\{x_2, S_2, S_3\};$
 $Z=280$

Шаг 1.

Избавление от отрицательных правых частей ограничений (если таковые имеются). Приведение задачи линейного программирования к стандартной форме.

<u>Шаг 2.</u>

Выделение базисного допустимого решения (если возможно) из стандартной формы.

<u>Шаг 3.</u>

Определение, является ли полученное решение оптимальным. Если да, то процесс решения окончен, если нет, то переходят к шагу 4.

Шаг 4.

Определение переменной, которая войдет в базис и переменной, которая выйдет из базиса таким образом, чтобы новое допустимое базисное решение было лучше предыдущего (по значению целевой функции).

<u>Шаг 5.</u>

Использование преобразований Жордана-Гаусса для нахождения нового допустимого базисного решения. Переход к шагу 3.

Признак оптимальности

• Для задачи ЛП на максимум целевой функции — допустимое базисное решение будет оптимальным решением, если в строке целевой функции все коэффициенты при переменных неотрицательны.

Признак оптимальности

• Для задачи ЛП на минимум целевой функции — допустимое базисное решение будет оптимальным решением, если в строке целевой функции все коэффициенты при переменных неположительны.

• Если таблице с оптимальным решением все небазисные переменные имеют в строке целевой функции ненулевые коэффициенты, то у задачи — единственное решение.

• Если хотя бы при одной из свободных переменных стоит нулевой коэффициент и в соответствующем столбце есть положительные элементы, то это говорит о том, что имеет место альтернативный оптимум.

• Если свободная переменная имеет отрицательный коэффициент в целевой функции (для задачи на максимум) и неположительные коэффициенты в данном столбце, то задача является неограниченной задачей линейного программирования.

• Базисное допустимое решение, у которого хотя бы одна из базисных переменных равна нулю, называется вырожденным решением, а задача, имеющая хотя бы одно вырожденное решение — вырожденной задачей линейного программирования.

Определение

• Альтернативная цена (opportunity cost) или снижающая оценка (reduced cost) для небазисной (свободной) переменной (в задаче на максимум) показывает максимальное значение, на которое должен быть увеличен соответствующий коэффициент в целевой функции, при котором текущий базис перестает быть оптимальным и свободной переменной представляется выгодным войти в базис.

Определение

• Теневая цена (двойственная оценка) і-го ограничения — это величина, на которую улучшится оптимальное значение целевой функции (увеличиться, при решении задачи на максимум и уменьшится, при решении задачи на минимум), если мы увеличим значение b_i на единицу (c b_i до b_i +1), при условии, что текущий базис останется оптимальным.