Метод искусственного базиса

Этапы алгоритма

- 1. Модифицируем ограничения так, чтобы правые части были неотрицательными.
- 2. Приводим модель к стандартной форме: добавляем дополняющие переменные S_i в ограничения типа « \leq » и избыточные переменные e_i в ограничения типа « \geq ».

3. Вводим искусственные переменные а_і в ограничения, где имелись знаки «≥» и «=».

4. Добавляем ограничения на знак на вновь введенные переменные.

5. Определяем М как большое число.

Добавляем $M(\Sigma a_i)$ в целевую функцию в случае задачи на минимум и вычитаем $M(\Sigma a_i)$ из целевой функции в случае задачи на максимум.

6. Выражаем а_і через свободные (небазисные) переменные и подставляем в целевую функцию.

- 7. Целевую функцию делим на две части и решаем задачу до получения решения во второй строке целевой функции.
- 8. В случае получения положительного результата на шаге 7 продолжаем решать основную задачу, если необходимо.

Теорема

- **€** Если в оптимальном плане М-задачи все искусственные переменные a_i равны 0, то исходная задача может иметь решение.
- € Если существует оптимальное решение М-задачи, в котором хотя бы одна из искусственных переменных а_і отлична от нуля, то система ограничений исходной задачи несовместна в области допустимых значений.
- **©** Если М-задача оказалась неразрешимой, то исходная задача также неразрешима.

Постановка задачи

Компания по производству прохладительных напитков выпускает напиток со вкусом апельсина. При этом она использует апельсиновый сок и содовую апельсиновую воду. Каждая унция апельсиновой содовой воды содержит 0.5 унции сахара и 1 мг витамина С. Каждая унция апельсинового сока содержит 0.25 унции сахара и 3 мг витамина С. Затраты компании на производство унции апельсиновой содовой воды составляют 2 цента, затраты на производство унции апельсинового сока – 3 цента. Отдел маркетинга считает, что каждая 10-унциевая бутылка напитка должна содержать, по меньшей мере, 20 мг витамина С и не более 4-х унций сахара.

Используйте линейное программирование для определения того, как компания сможет выполнить требования отдела маркетинга с минимальными затратами.

• Переменные принятия решений:

 x_1 — количество унций апельсиновой содовой воды в бутылке;

 x_2 — количество унций апельсинового сока в бутылке.

Математическая модель:

<u>Целевая функция</u> – минимизация затрат на производство напитка:

$$\min Z = 2x_1 + 3x_2$$

Ограничения:

$$0.5 x_1 + 0.25 x_2 \le 4$$
 (содержание сахара);
$$x_1 + 3 x_2 \ge 20$$
 (содержание витамина C);
$$x_1 + x_2 = 10$$
 (ограничение на объем бутылки);
$$x_1, x_2 \ge 0$$
 (ограничения на знак).

Стандартная форма задачи:

$$\min Z = 2x_1 + 3x_2;$$

$$0.5x_1 + 0.25x_2 + S_1 = 4;$$

$$x_1 + 3x_2 - e_2 = 20;$$

$$x_1 + x_2 = 10;$$

$$x_1, x_2, S_1, e_2 \ge 0.$$

Модель с учетом искусственных переменных:

min
$$Z = 2x_1 + 3x_2 + 0S_1 + 0e_2 + M(a_2 + a_3);$$

$$0.5x_1 + 0.25x_2 + S_1 = 4;$$

$$x_1 + 3x_2 - e_2 + a_2 = 20;$$

$$x_1 + x_2 + a_3 = 10;$$

$$x_1, x_2, S_1, e_2, a_2, a_3 \ge 0.$$

Преобразование целевой функции

$$a_{2} = 20 - x_{1} - 3x_{2} + e_{2}$$

$$a_{3} = 10 - x_{1} - x_{2}$$

$$M(a_{2} + a_{3}) = M(30 - 2x_{1} - 4x_{2} + e_{2})$$

$$min Z = 2x_{1} + 3x_{2} + 0S_{1} + 0e_{2} + M(30 - 2x_{1} - 4x_{2} + e_{2})$$

$$Z^{I} - 2x_{1} - 3x_{2} - 0S_{1} - 0e_{2} = 0$$

$$Z^{II} + M(2x_{1} + 4x_{2} - e_{2}) = 30M$$

Базис	c _j	b _i	x ₁	X ₂	S ₁	e ₂	a ₂	a_3	
			2	3	0	0	M	M	C.o.
S_1	0	4	0.5	0.25	1	0	0	0	16
\mathbf{a}_2	M	20	1	3	0	-1	1	0	6.66
a ₃	M	10	1	1	0	0	0	1	10
Z-c _j	_	0	-2	-3	0	0	0	0	_
	M	30	2	4	0	-1	0	0	_

			\mathbf{x}_1	x ₂	S_1	e_2	a_2	a_3	
Базис	c_{j}	b _i	2	3	0	0	M	M	C.o
S_1	0	7/3	5/12	0	1	1/12	-1/12	0	28/
x ₂	3	20/3	1/3	1	0	-1/3	1/3	0	20
a ₃	M	10/3	2/3	0	0	1/3	-1/3	1	5
	_	20	-1	0	0	-1	1	0	_
Z-c _j	M	10/3	2/3	0	0	1/3	-4/3	0	_

			x ₁	x ₂	S_1	e_2	a_2	a_3
Базис	c_{j}	b _i	2	3	0	0	M	М
S_1	0	0.25	0	0	1	-0.125	0.125	-0.625
x ₂	3	5	0	1	0	-0.5	0.5	-0.5
\mathbf{x}_1	2	5	1	0	0	0.5	-0.5	1.5
7 -	_	25	0	0	0	-0.5	0.5	1.5
Z-c _j	M	0	0	0	0	0	-1	-1

Оптимальное решение:

$$x_1 = 5, x_2 = 5,$$

$$Z=25.$$

Двустадийный метод

(рассмотреть самостоятельно)