TEMA 3

АНАЛИЗ ЧУВСТВИТЕЛЬНОСТИ И ДВОЙСТВЕННОСТЬ (продолжение)

Матричная форма записи задачи ЛП

$$\max Z = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n,$$

$$a_{11} x_1 + a_{12} x_2 + \ldots + a_{1n} x_n = b_1,$$

$$a_{21} x_1 + a_{22} x_2 + \ldots + a_{2n} x_n = b_2,$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$a_{m1} x_1 + a_{m2} x_2 + \ldots + a_{mn} x_n = b_m,$$

$$x_j \ge 0, \quad j = \overline{1, n}.$$

$$BV = \{BV_1, BV_2, \dots, BV_m\}$$

$$X_{\mathit{BV}} = \begin{pmatrix} X_{\mathit{BV}_1} \\ X_{\mathit{BV}_2} \\ \vdots \\ X_{\mathit{BV}_m} \end{pmatrix}$$
 — вектор базисных переменных размерностью $m \times 1$

$$NBV = \{NBV_1, NBV_2, \dots, NBV_{n-m}\}$$

$$X_{NBV} = egin{pmatrix} X_{NBV_1} \\ X_{NBV_2} \\ \vdots \\ X_{NBV_{n-m}} \end{pmatrix}$$
 — вектор свободных (небазисных) переменных размерностью $(n-m) \times 1$

$$C_{BV} = (C_{BV_1}, C_{BV_2}, ..., C_{BV_m})$$

вектор-строка размерностью $1 \times m$ коэффициентов целевой функции при базисных переменных из таблицы с оптимальным

<u>решением</u>

$$C_{NBV} = (C_{NBV_1}, C_{NBV_2}, ..., C_{NBV_{n-m}})$$

вектор-строка размерностью $1 \times (n-m)$

коэффициентов целевой функции при небазисных

переменных из таблицы с оптимальным решением

$$\max Z = 60 x_1 + 30 x_2 + 20 x_3 + 0 S_1 + 0 S_2 + 0 S_3$$

$$8x_1 + 6x_2 + x_3 + S_1 = 48$$

$$4x_1 + 2x_2 + 1.5x_3 + S_2 = 20$$

$$2x_1 + 1.5x_2 + 0.5x_3 + S_3 = 8$$

$$x_1, x_2, x_3, S_1, S_2, S_3 \ge 0$$

$$Z + 5x_{2} + 10S_{2} + 10S_{3} = 280,$$

$$-2x_{2} + S_{1} + 2S_{2} - 8S_{3} = 24,$$

$$-2x_{2} + x_{3} + 2S_{2} - 4S_{3} = 8,$$

$$x_{1} + 1.25x_{2} - 0.5S_{2} + 1.5S_{3} = 2.$$

$$BV = \left\{ S_{1}, x_{3}, x_{1} \right\}$$

$$X_{BV} = \begin{pmatrix} S_1 \\ X_3 \\ X_1 \end{pmatrix}$$

$$NBV = \left\{ x_2, S_2, S_3 \right\}$$

$$X_{NBV} = \begin{pmatrix} x_2 \\ S_2 \\ S_3 \end{pmatrix}$$

$$C_{BV} = (0,20,60)$$

$$C_{NBV} = (30,0,0)$$

B – матрица размерностью $m \times m$

$$B = \begin{pmatrix} 1 & 1 & 8 \\ 0 & 1.5 & 4 \\ 0 & 0.5 & 2 \end{pmatrix} \qquad N = \begin{pmatrix} 6 & 0 & 0 \\ 2 & 1 & 0 \\ 1.5 & 0 & 1 \end{pmatrix}$$

N – матрица размерностью $m \times (n-m)$

b – вектор размерностью m imes 1

правых частей ограничений

$$b = \begin{pmatrix} 48 \\ 20 \\ 8 \end{pmatrix}$$

Исходная задача

$$Z = C_{BV} X_{BV} + C_{NBV} X_{NBV}$$

$$BX_{BV} + NX_{NBV} = b$$

$$X_{RV}, X_{NRV} \ge 0$$

$$\max Z = \begin{pmatrix} 0 & 20 & 60 \end{pmatrix} \cdot \begin{pmatrix} S_1 \\ X_3 \\ X_1 \end{pmatrix} + \begin{pmatrix} 30 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} X_2 \\ S_2 \\ S_3 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 8 \\ 0 & 1.5 & 4 \\ 0 & 0.5 & 2 \end{pmatrix} \cdot \begin{pmatrix} S_1 \\ x_3 \\ x_1 \end{pmatrix} + \begin{pmatrix} 6 & 0 & 0 \\ 2 & 1 & 0 \\ 1.5 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_2 \\ S_2 \\ S_3 \end{pmatrix} = \begin{pmatrix} 48 \\ 20 \\ 8 \end{pmatrix}$$

$$\begin{pmatrix} S_{1} \\ X_{3} \\ X_{1} \end{pmatrix} \geq \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} X_{2} \\ S_{2} \\ S_{3} \end{pmatrix} \geq \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

$$B^{-1}BX_{BV} + B^{-1}NX_{NBV} = B^{-1}b$$

$$\bigvee$$

$$X_{BV} + B^{-1}NX_{NBV} = B^{-1}b$$

$$B^{-1} = \begin{pmatrix} 1 & 2 & -8 \\ 0 & 2 & -4 \\ 0 & -0.5 & 1.5 \end{pmatrix}$$

$$\begin{pmatrix} S_1 \\ X_3 \\ X_1 \end{pmatrix} + \begin{pmatrix} 1 & 2 & -8 \\ 0 & 2 & -4 \\ 0 & -0.5 & 1.5 \end{pmatrix} \cdot \begin{pmatrix} 6 & 0 & 0 \\ 2 & 1 & 0 \\ 1.5 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} X_2 \\ S_2 \\ S_3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & -8 \\ 0 & 2 & -4 \\ 0 & -0.5 & 1.5 \end{pmatrix} \cdot \begin{pmatrix} 48 \\ 20 \\ 8 \end{pmatrix}$$

$$\bigvee$$

$$\begin{pmatrix} S_1 \\ X_3 \\ X_1 \end{pmatrix} + \begin{pmatrix} -2 & 2 & -8 \\ -2 & 2 & -4 \\ 1.25 & -0.5 & 1.5 \end{pmatrix} \cdot \begin{pmatrix} X_2 \\ S_2 \\ S_3 \end{pmatrix} = \begin{pmatrix} 24 \\ 8 \\ 2 \end{pmatrix}$$

$$C_{BV}B^{-1}BX_{BV} + C_{BV}B^{-1}NX_{NBV} = C_{BV}B^{-1}b$$

$$C_{BV}X_{BV} + C_{BV}B^{-1}NX_{NBV} = C_{BV}B^{-1}b$$

$$Z - C_{BV} X_{BV} - C_{NBV} X_{NBV} = 0$$

$$Z + (C_{BV}B^{-1}N - C_{NBV})X_{NBV} = C_{BV}B^{-1}b$$

$$\widetilde{c}_{j} = C_{BV} B^{-1} a_{j} - c_{j}$$

$$Z = C_{BV}B^{-1}b$$

$$C_{BV} = (0 \ 20 \ 60)$$

$$B^{-1} = \begin{pmatrix} 1 & 2 & -8 \\ 0 & 2 & -4 \\ 0 & -0.5 & 1.5 \end{pmatrix}$$

$$C_{BV}B^{-1} = (0\ 10\ 10)$$

$$\widetilde{c}_{S_2} = C_{BV} B^{-1} a_{S_2} - c_{S_2} = \begin{pmatrix} 0 & 10 & 10 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} - 0 = 10$$

$$\widetilde{c}_{2} = C_{BV} B^{-1} a_{2} - c_{2} = (0 \quad 10 \quad 10) \cdot \begin{pmatrix} 6 \\ 2 \\ 5 \end{pmatrix} - 30 = 5$$

$$\widetilde{c}_{S_3} = C_{BV} B^{-1} a_{S_3} - c_{S_3} = \begin{pmatrix} 0 & 10 & 10 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} - 0 = 10$$

$$C_{BV}B^{-1}b = \begin{pmatrix} 0 & 10 & 10 \end{pmatrix} \cdot \begin{pmatrix} 48 \\ 20 \\ 8 \end{pmatrix} = 280$$

$$Z + 5x_2 + 10S_2 + 10S_3 = 280$$

Упрощенные формулы для дополняющих, избыточных и искусственных переменных

 \widetilde{C}_{S_i} в оптимальном решении = *i*-му элементу из $C_{{\scriptscriptstyle BV}}B^{{\scriptscriptstyle -1}}-0$ или *i*-му элементу из $C_{{\scriptscriptstyle BV}}B^{{\scriptscriptstyle -1}}$

$$C_{BV}B^{-1} = (0\ 10\ 10) \longrightarrow \widetilde{c}_{S_2} = 10 - 0 = 10$$

$$\widetilde{C}_{e_i}$$
 в оптимальном решении = – (*i*-му элементу из $C_{\!_{BV}}\!B^{\!-\!1}$) – 0 или – (*i*-му элементу из $C_{\!_{BV}}\!B^{\!-\!1}$)

$$\widetilde{C}_{a_i}$$
 в оптимальном решении = *i*-му элементу из $C_{\scriptscriptstyle BV}B^{\scriptscriptstyle -1}-\left(-M\right)$

или \emph{i} -му элементу из $\,C_{_{RV}}B^{^{-1}}+M\,$

Анализ чувствительности

• Направления анализа чувствительности

Изменение 1. Изменение коэффициента целевой функции при небазисной переменной;

Изменение 2. Изменение коэффициента целевой функции при базисной переменной;

Анализ чувствительности

• Направления анализа чувствительности

Изменение 3. Изменение правой части ограничения;

Изменение 4. Изменение колонки коэффициентов при небазисной переменной;

Анализ чувствительности

• Направления анализа чувствительности

Изменение 5. Добавление новой переменной или нового вида деятельности;

Изменение 6. Добавление нового ограничения.

$$Z + 2x_2 + x_4 + x_6 = 6,$$

= 1,
= 2,

$$\max Z = 60 x_1 + 30 x_2 + 20 x_3 + 0 S_1 + 0 S_2 + 0 S_3$$

$$8x_1 + 6x_2 + x_3 + S_1 = 48$$

$$4x_1 + 2x_2 + 1.5x_3 + S_2 = 20$$

$$2x_1 + 1.5x_2 + 0.5x_3 + S_3 = 8$$

$$x_1, x_2, x_3, S_1, S_2, S_3 \ge 0$$

Ба-	C _j	b _i	X ₁	X ₂	X ₃	S ₁	S ₂	S ₃
			60	30	20	0	0	0
S ₁	0	48	8	6	1	1	0	0
S ₂	0	20	4	2	1.5	0	1	0
S ₃	0	8	2	1.5	0.5	0	0	1
Z-c _j	_	0	-60	-30	-20	0	0	0

Ба-	C _j	b _i	X ₁	X ₂	X ₃	S ₁	S ₂	S ₃
			60	30	20	0	0	0
S ₁	0	24	0	-2	0	1	2	-8
X ₃	20	8	0	-2	1	0	2	-4
X ₁	60	2	1	1.25	0	0	-0.5	1.5
Z-c _j	_	280	0	5	0	0	10	10

Изменение коэффициента целевой функции при небазисной переменной

$$c_2 = 30$$

$$BV = \left\{ S_{1}, x_{3}, x_{1} \right\}$$

$$30 + \Delta$$

$$\widetilde{c}_{j} = C_{BV} B^{-1} a_{j} - c_{j}$$

$$\widetilde{c}_2 \geq 0$$

$$\widetilde{c}_2 < 0$$

$$a_2 = \begin{bmatrix} 6 \\ 2 \\ 1.5 \end{bmatrix}$$

$$c_2 = 30 + \Delta$$

$$C_{BV}B^{-1} = \begin{bmatrix} 0 & 10 & 10 \end{bmatrix}$$

$$\widetilde{c}_{2} = \begin{bmatrix} 0 & 10 & 10 \end{bmatrix} \cdot \begin{vmatrix} 6 \\ 2 \\ 1.5 \end{vmatrix} - (30 + \Delta) = 35 - 30 - \Delta = 5 - \Delta$$

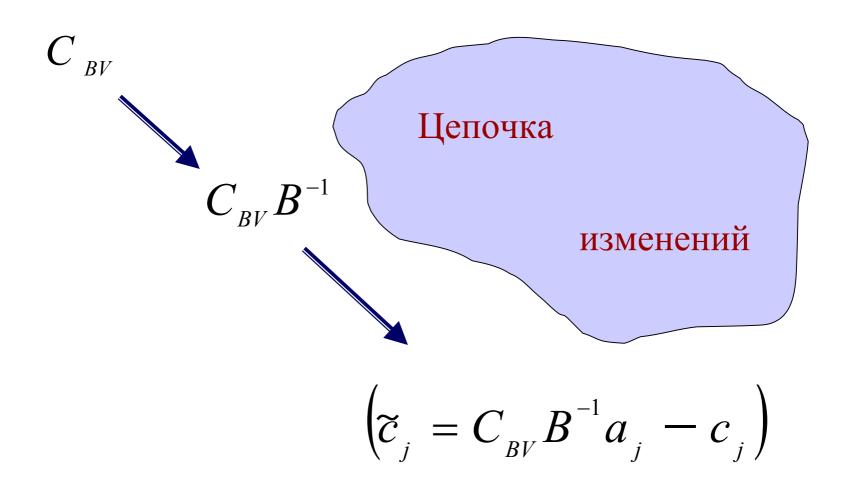
$$\widetilde{c}_2 \ge 0$$
 \longrightarrow $5 - \Delta \ge 0$ \downarrow $\Delta \le 5$

$$c_2 \le 30 + 5 = 35$$

$$\widetilde{c}_2 < 0 \longrightarrow \Delta > 5$$

Пусть
$$\widetilde{c}_2 = 40$$

$$\widetilde{c}_2 = \begin{bmatrix} 0 & 10 & 10 \end{bmatrix} \cdot \begin{bmatrix} 6 \\ 2 \\ 1.5 \end{bmatrix} - 40 = -5$$


Ба-	C _j	b _i	X ₁	X ₂	X ₃	S ₁	S ₂	S ₃
			60	30	20	0	0	0
S ₁	0	24	0	-2	0	1	2	-8
x ₃	20	8	0	-2	1	0	2	-4
X ₁	60	2	1	1.25	0	0	-0.5	1.5
Z-c _j	_	280	0	- 5	0	0	10	10

Ба- зис	C _j	b _i	X ₁	X ₂	X ₃	S ₁	S ₂	S ₃
			60	40	20	0	0	0
S ₁	0	27.2	1.6	0	0	1	1.2	-5.6
X ₃	20	11.2	1.6	0	1	0	1.2	-1.6
X ₂	40	1.6	0.8	1	0	0	0.4	1.2
Z-c _j	_	288	4	0	0	0	8	16

Правило 1.

Если $\widetilde{c}_j \geq 0$, то BV остается оптимальным. Если , $\widetilde{c}_j < 0$ то BV перестает быть оптимальным и x_j входит в базис.

Изменение коэффициента целевой функции при базисной переменной

$$c_1 = 60 \longrightarrow c_1 = 60 + \Delta$$

$$C_{BV} = \begin{bmatrix} 0 & 20 & 60 + \Delta \end{bmatrix}$$

$$C_{BV} B^{-1}$$

$$C_{BV}B^{-1} = \begin{bmatrix} 0 & 20 & 60 + \Delta \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & -8 \\ 0 & 2 & -4 \\ 0 & -0.5 & 1.5 \end{bmatrix} = \begin{bmatrix} 0 & 10 - 0.5\Delta & 10 + 1.5\Delta \end{bmatrix}.$$

$$a_1 = \begin{bmatrix} 8 \\ 4 \\ 2 \end{bmatrix} \qquad a_2 = \begin{bmatrix} 6 \\ 2 \\ 1.5 \end{bmatrix}$$

$$a_2 = \begin{vmatrix} 6 \\ 2 \\ 1.5 \end{vmatrix}$$

$$a_3 = \begin{vmatrix} 1 \\ 1.5 \\ 0.5 \end{vmatrix}$$
.

$$c_1 = 60 + \Delta$$

$$c_2 = 30$$

$$c_3 = 20$$

$$\widetilde{c}_2 = C_{BV}B^{-1}a_2 - c_2 = \begin{bmatrix} 0 & 10 - 0.5\Delta & 10 + 0.5\Delta \end{bmatrix} \cdot \begin{bmatrix} 6 \\ 2 \\ 1.5 \end{bmatrix} - 30 = 5 + 1.25\Delta$$

$$\widetilde{c}_{S_2} = 10 - 0.5\Delta$$

$$\widetilde{c}_{S_3} = 10 + 1.5\Delta$$

$$5 + 1.25\Delta \ge 0$$
 $\Delta \ge -4$

$$10 - 0.5\Delta \ge 0$$
 $\Delta \le 20$

$$10+1.5\Delta \ge 0 \qquad \longrightarrow \qquad \Delta \ge -20/3$$

$$-4 \le \Delta \le 20$$

$$56 \le c_1 \le 80$$

$$c_1 = 100 \longrightarrow \Delta = 100 - 60 = 40$$

$$\widetilde{c}_{1}=0,$$

$$\widetilde{c}_{2} = 5 + 1.25\Delta = 55$$

$$\widetilde{c}_3=0,$$

$$\widetilde{c}_{S_1}=0$$
,

$$\widetilde{c}_{S_2} = 10 - 0.5\Delta = -10,$$

$$\tilde{c}_{S_3} = 10 + 1.5\Delta = 70.$$

$$Z = C_{BV}B^{-1}b = \begin{bmatrix} 0 & -10 & 70 \end{bmatrix} \cdot \begin{bmatrix} 48 \\ 20 \\ 8 \end{bmatrix} = 360.$$

Ба-	C _j	b _i	X ₁	X ₂	X ₃	S ₁	S ₂	S ₃
ЗИС	J		100	30	20	0	0	0
S ₁	0	24	0	-2	0	1	2	-8
X ₃	20	8	0	-2	1	0	2	-4
X ₁	60	2	1	1.25	0	0	-0.5	1.5
Z-c _j	_	360	0	55	0	0	-10	70

Ба-	c _j	b _i	X ₁	X ₂	X ₃	S ₁	S ₂	S ₃
ЗИС	J		100	30	20	0	0	0
S ₁	0	16	0	0	1	1	0	-4
S ₂	0	4	0	-1	0.5	0	1	-2
X ₁	100	4	1	0.75	0.25	0	0	0.5
Z-c _j	_	400	0	45	5	0	0	50

Правило 2.

Если коэффициент при базисной переменной в целевой функции изменяется, то текущий базис остается оптимальным тогда, когда все коэффициенты в строке целевой функции остаются неотрицательными. Если хотя бы один коэффициент $\widetilde{c}_{i} < 0$, то текущий базис перестает быть оптимальным.

Алгоритм нахождения пределов изменения коэффициентов целевой функции

• Выпишем строку коэффициентов целевой функции $Z - c_i$;

• Выпишем строку коэффициентов, соответствующую *j*-й базисной переменной. Запишем эти строки одна под одной;

- Разделим каждый элемент из строки $Z-c_{j}$, соответствующий только небазисным переменным, на соответствующий элемент \mathcal{A}_{kj} из строки базисной переменной, выбранной на 2-м шаге;
- Определим предел увеличения коэффициента целевой функции. Если отрицательные числа отсутствуют, то для данного коэффициента верхнего предела не существует;

• Определим предел уменьшения коэффициента при базисной переменной. Если положительные числа отсутствуют, то для данного коэффициента нижнего предела не существует;

• Повторяем шаги 1–5 для всех базисных переменных.

Расчет пределов изменения коэффициентов при переменных в целевой функции

Верхний:
$$\overline{c}_j = c_j + \min_k \left\{ \left| \frac{\widetilde{c}_k}{a_{kj}} \right| \right\}$$
 для всех $a_{kj} < 0$

для задачи на $\max Z$

и
$$a_{kj} > 0$$

для задачи на $\min Z$

Нижний:
$$\underline{c}_j = c_j - \min_k \left\{ \frac{\widetilde{c}_k}{a_{kj}} \right\}$$
 для всех $a_{kj} > 0$

для задачи на мах Z

и $a_{kj} < 0$

для задачи на $\min Z$

ИЗМЕНЕНИЕ ПРАВОЙ ЧАСТИ ОГРАНИЧЕНИЯ

$$b_2 = 20 + \Delta$$

$$B^{-1}b = B^{-1} \cdot \begin{bmatrix} 48 \\ 20 + \Delta \\ 8 \end{bmatrix} = \begin{bmatrix} 1 & 2 & -8 \\ 0 & 2 & -4 \\ 0 & -0.5 & 1.5 \end{bmatrix} \cdot \begin{bmatrix} 48 \\ 20 + \Delta \\ 8 \end{bmatrix} = \begin{bmatrix} 24 + 2\Delta \\ 8 + 2\Delta \\ 2 - 0.5\Delta \end{bmatrix}$$

$$b^* = \begin{pmatrix} \text{первоначальное значение правой части} \\ \text{в таблице с оптимальным решением} \end{pmatrix}^+$$

$$+\Delta imes ($$
i - я колонка из $B^{\scriptscriptstyle -1}$ $)$

$$24 + 2\Delta \ge 0 \qquad \longrightarrow \quad \Delta \ge -12$$

$$8 + 2\Delta \ge 0$$
 \longrightarrow $\Delta \ge -4$

$$2-0.5\Delta \ge 0$$
 $\Delta \le 4$

$$-4 \le \Delta \le 4$$

$$16 \le b_2 \le 24$$

$$b_2 = 22 \qquad (16 \le 22 \le 24)$$

$$\begin{bmatrix} S_1 \\ x_3 \\ x_1 \end{bmatrix} = B^{-1}b = \begin{bmatrix} 1 & 2 & -8 \\ 0 & 2 & -4 \\ 0 & -0.5 & 1.5 \end{bmatrix} \cdot \begin{bmatrix} 48 \\ 22 \\ 8 \end{bmatrix} = \begin{bmatrix} 28 \\ 12 \\ 1 \end{bmatrix}$$

$$Z_{HOB.} = C_{BV}B^{-1}b_{HOB.} = \begin{bmatrix} 0 & 10 & 10 \end{bmatrix} \cdot \begin{vmatrix} 48 \\ 22 \\ 8 \end{vmatrix} = 300$$

$$b_2 = 30 > 24$$

$$B^{-1}b = \begin{bmatrix} 1 & 2 & -8 \\ 0 & 2 & -4 \\ 0 & -0.5 & 1.5 \end{bmatrix} \begin{bmatrix} 48 \\ 30 \\ 8 \end{bmatrix} = \begin{bmatrix} 44 \\ 28 \\ -3 \end{bmatrix}$$

$$C_{BV}B^{-1}b = \begin{bmatrix} 0 & 10 & 10 \end{bmatrix} \cdot \begin{vmatrix} 48 \\ 30 \\ 8 \end{vmatrix} = 380$$

Ба-	C _j	b _i	X ₁	X ₂	X ₃	S ₁	S ₂	S ₃
ЗИС	J		60	30	20	0	0	0
S ₁	0	44	0	-2	0	1	2	-8
X ₃	20	28	0	-2	1	0	2	-4
X ₁	60	-3	1	1.25	0	0	-0.5	1.5
Z-c _j	_	380	0	5	0	0	10	10

Правило 3.

Если правая часть ограничения изменяется, то текущий базис остается оптимальным в том случае, когда правые части всех ограничений остаются неотрицательными. Если хотя бы у одного из ограничений правая часть становится отрицательной, то текущий базис является недопустимым и должно быть найдено новое оптимальное решение.

Для определения пределов устойчивости полученного решения необходимо использовать обратную матрицу $\,B^{\scriptscriptstyle -1}$ и значения переменных в оптимальном базисе $X_{\scriptscriptstyle BV}^*$.

Расчет пределов изменения правых частей ограничений

Пределы увеличения правых частей ограничений:

По тем x_{j}^{*} , для которых $a_{ji} < 0$:

$$\Delta_{i}^{+} = \min_{j} \left\{ \left| \frac{x_{j}}{a_{ji}} \right| \right\}$$

<u>Пределы уменьшения правых частей</u> ограничений:

По тем
$$x_{j}^{*}$$
, для которых $a_{ji}>0$

$$\Delta_i^{(-)} = \min_j \left\{ \frac{x_j}{a_{ji}} \right\}$$

Исходная таблица

Базис	c_{j}	b _i	\mathbf{x}_1	x ₂	X ₃	S_1	S_2	S_3
	J		60	30	20	0	0	0
S_1	0	48	8	6	1	1	0	0
S_2	0	20	4	2	1.5	0	1	0
S_3	0	8	2	1.5	0.5	0	0	1
Z-c _j	_	0	-60	-30	-20	0	0	0

Таблица с оптимальным решением

Базис	c _j	b _i	x ₁	x ₂	x ₃	S_1	S_2	S_3
	J	_	60	30	20	0	0	0
S_1	0	24	0	-2	0	1	2	-8
X ₃	20	8	0	-2	1	0	2	-4
\mathbf{x}_1	60	2	1	1.25	0	0	-0.5	1.5
Z-c _j	_	280	0	5	0	0	10	10

Матрицы коэффициентов при базисных переменных, вошедших в оптимальное решение

Исходная:

$$B = \begin{pmatrix} 1 & 1 & 8 \\ 0 & 1.5 & 4 \\ 0 & 0.5 & 2 \end{pmatrix}$$

Обратная:

$$B^{-1} = \begin{pmatrix} 1 & 2 & -8 \\ 0 & 2 & -4 \\ 0 & -0.5 & 1.5 \end{pmatrix}$$

1-е ограничение

предел уменьшения:
$$\Delta_1^{(-)} = \min_j \left\{ \frac{24}{1} \right\} = 24$$

предел увеличения: +∞

$$-24 \le \Delta_1 \le +\infty$$
$$24 \le b_1 \le +\infty$$

2-е ограничение

предел уменьшения:
$$\Delta_2^{(-)} = \min_j \left\{ \frac{24}{2}, \frac{8}{2} \right\} = 4$$

предел увеличения:
$$\Delta_2^{(+)} = \min_{j} \left\{ \left| \frac{2}{-0.5} \right| \right\} = 4$$

$$-4 \le \Delta_2 \le 4$$

$$16 \le b_2 \le 24$$

3-е ограничение

предел уменьшения: $\Delta_3^{(-)} = \min_j \left\{ \frac{2}{1.5} \right\} = 1\frac{1}{3}$

предел увеличения:
$$\Delta_3^{(+)} = \min_j \left\{ \frac{24}{-8}; \frac{8}{-4} \right\} = 2$$

$$-1\frac{1}{3} \le \Delta_3 \le 2$$
$$6\frac{2}{3} \le b_3 \le 10$$

ИЗМЕНЕНИЕ КОЛОНКИ КОЭФФИЦИЕНТОВ ПРИ НЕБАЗИСНОЙ ПЕРЕМЕННОЙ

$$\widetilde{c}_{2} = C_{BV} B^{-1} a_{2} - c_{2} C_{BV} B^{-1} = \begin{bmatrix} 0 & 10 & 10 \end{bmatrix}$$

$$c_2 = 43 \qquad a_2 = \begin{bmatrix} 5 \\ 2 \\ 2 \end{bmatrix}$$

$$\widetilde{c}_2 = \begin{bmatrix} 0 & 10 & 10 \end{bmatrix} \cdot \begin{bmatrix} 5 \\ 2 \\ 2 \end{bmatrix} - 43 = 40 - 43 = -3 < 0$$

$$B^{-1}a_{2} = \begin{bmatrix} 1 & 2 & -8 \\ 0 & 2 & -4 \\ 0 & -0.5 & 1.5 \end{bmatrix} \cdot \begin{bmatrix} 5 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} -7 \\ -4 \\ 2 \end{bmatrix}$$

Ба-	c _i b	c _j b _i	X ₁	X ₂	X ₃	S ₁	S ₂	S ₃
ЗИС	J	'	60	43	20	0	0	0
S ₁	0	24	0	-7	0	1	2	-8
X ₃	20	8	0	-4	1	0	2	-4
X ₁	60	2	1	2	0	0	-0.5	1.5
Z-c _j	_	280	0	-3	0	0	10	10

Ба-	C _i	c _j b _i	X ₁	X ₂	X ₃	S ₁	S ₂	S ₃
ЗИС	J		60	43	20	0	0	0
S ₁	0	31	3.5	0	0	1	0.25	-2.75
X ₃	20	12	2	0	1	0	1	-1
X ₂	43	1	0.5	1	0	0	-0.25	0.75
Z-c _j	_	283	1.5	0	0	0	9.25	12.3

Правило 4.

При изменении колонки коэффициентов при свободной переменной $\left|\mathcal{X}\right|_{i}$ текущий базис остается неизменным, если $\widetilde{c}_{\scriptscriptstyle j} \geq 0$. Если $\widetilde{c}_{\scriptscriptstyle i} < 0$,то текущий базис перестает быть оптимальным и $\left. \mathcal{X} \right|_{i}$ должен стать базисной переменной в новом оптимальном решении.

ДОБАВЛЕНИЕ НОВОЙ ПЕРЕМЕННОЙ ИЛИ НОВОГО РОДА ДЕЯТЕЛЬНОСТИ

 $\chi_{_{A}}$ - количество производимых скамеечек

$$(x_4 \ge 0)$$

$$Z - 60x_{1} - 30x_{2} - 20x_{3} - 15x_{4} = 0$$

$$8x_{1} + 6x_{2} + x_{3} + x_{4} + S_{1} = 48$$

$$4x_{1} + 2x_{2} + 1.5x_{3} + x_{4} + S_{2} = 20$$

$$2x_{1} + 1.5x_{2} + 0.5x_{3} + x_{4} + S_{3} = 8$$

$$x_1, x_2, x_3, x_4, S_1, S_2, S_3 \ge 0$$

$$c_4 = 15 \qquad a_4 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\widetilde{c}_4 = \begin{bmatrix} 0 & 10 & 10 \end{bmatrix} \cdot \begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix} - 15 = 20 - 15 = 5$$

Правило 5.

Если новая колонка (соответствующая переменной ${\mathcal X}_i$) добавлена в модель ЛП, то текущий базис будет оставаться оптимальным, когда $\widetilde{c}_{_{i}} \geq 0$. Если $\widetilde{c}_{_{j}} < 0$, то текущий базис перестает быть оптимальным и переменная $|\mathcal{X}|_i$ должна стать базисной переменной в новом оптимальном решении.

Обобщение анализа чувствительности

Изменения в основной проблеме	Влияние на таблицу с оптимальным решением	Текущий базис все еще оптимален, если		
Изменение коэффициента целевой функции при небазисной переменной	Изменяется коэффициент при соответствующей переменной x_j в целевой функции окончательной таблицы	Коэффициент при <i>х_ј</i> в строке целевой функции неотрицателен		
Изменение коэффициента целевой функции при базисной переменной	Может измениться вся строка целевой функции	Все переменные имеют неотрицательные коэффициенты в строке целевой функции		

Изменение правой части ограничения	Изменяются правые части ограничений и строка целевой функции	Правые части ограничений неотрицательны
Изменение колонки коэффициентов при небазисной переменной	Изменение коэффициентов при переменной x_j в строке целевой функции и в ограничениях итоговой таблицы	Коэффициент при <i>х_ј</i> в строке целевой функции неотрицателен
Добавление нового вида деятельности	Изменение коэффициентов при переменной x_j в строке целевой функции и в ограничениях итоговой таблицы	Коэффициент при <i>х_ј</i> в строке целевой функции неотрицателен