Правило 100%

Анализ чувствительности, когда изменяется более одного параметра

Изменение коэффициентов целевой функции

1 случай

Все переменные, значения коэффициентов которых изменены в целевой функции, являются небазисными.

2 случай

По крайней мере, одна переменная, при которой изменен коэффициент в целевой функции, является базисной.

$$\min Z = 150x_1 + 60x_2 + 90x_3 + 240x_4$$

$$400x_1 + 200x_2 + 150x_3 + 500x_4 \ge 500$$

$$30x_1 + 20x_2 \ge 60$$

$$20x_1 + 20x_2 + 40x_3 + 40x_4 \ge 100$$

$$20x_1 + 40x_2 + 10x_3 + 50x_4 \ge 80$$

$$x_j \ge 0 \qquad (j = \overline{1,4})$$

Пере- менная	Значе- ние	Альтер- нативная цена	Коэффици- ент целевой функции	Мини- мальное значение коэффи- циента	Макси- мальное значение коэффи- циента
X ₁	0	-82.5	150	67.5	+ ∞
X ₂	3	0.0	60	45.0	115
X ₃	1	0.0	90	0.0	120
X ₄	0	-150.0	240	90.0	+ ∞

Огра- ни- чение	Теку- щее зна- чение	Тене- вая цена	Недовы- полнение/ перевы- полнение	Минималь- ное значение правой части ограниче- ния	Макси- мальное значение правой части ограни- чения
1)	≥ 500	0.0	250.0	- ∞	750
2)	≥ 60	-0.75	0.0	31.42857	100
3)	≥ 100	-2.25	0.0	60	+ ∞
4) Z _{min} =27	≥ 80 0	0.0	50.0	- ∞	130

Пример 1.

• Цена тульских пряников возрастает до 1 грн. 80 коп., а цена пиццы снижается до 1 грн. 50 коп.

• Остается ли текущий базис оптимальным? Каким будет новое оптимальное решение?

Решение.

Первый случай.

Базис останется оптимальным, если

$$67.5 \le 180 \le \infty$$

 $90 < 150 < \infty$

Пример 2.

Цена пряника снижается до 1 грн. 20 коп., а цена пиццы до 75 коп.

Будет ли базис все еще оптимальным?

Второй случай. Обозначения

 c_j – коэффициент при x_j ;

 Δc_j – изменение c_j ;

 I_j — максимально допустимое увеличение коэффициента c_j ;

 D_j — максимально допустимое снижение коэффициента c_i .

Расчетные формулы

$$r_{j} = \frac{\Delta c_{j}}{I_{j}}, \quad \Delta c_{j} > 0$$

$$r_{j} = \frac{-\Delta c_{j}}{D_{i}}, \quad \Delta c_{j} < 0$$

$$r_{i}=0,$$
 $\Delta c_{i}=0$

$$\sum_{j=1}^{n} r_{j} \leq 1 \implies$$
 базис останется оптимальным

$$\sum_{j=1}^n r_j > 1$$
 \Rightarrow базис может перестать быть оптимальным

$$\max Z = 60x_1 + 30x_2 + 20x_3$$

$$8x_1 + 6x_2 + x_3 \le 48$$

$$4x_1 + 2x_2 + 1.5x_3 \le 20$$

$$2x_1 + 1.5x_2 + 0.5x_3 \le 8$$

$$x_1, x_2, x_3 \ge 0$$

Перемен-	Значение	Альтер- нат. цена	КЦФ	Мин. знач. к.ц.ф.	Макс. знач. к.ц.ф.
\mathbf{x}_1	2	0	60	56	80
X ₂	0	5	30	- ∞	35
X ₃	8	0	20	15	22.5

Ограни- чение	Текущее значение	Теневая цена	Недо- вып./ перевып.	Мин. знач. п.ч.о.	Макс. знач. п.ч.о.
1)	≤ 48	0	24	24	+ ∞
2)	≤ 20	10	0	16	24
3)	≤ 8	10	0	6.67	10

$$Z_{max} = 280$$

Пример 3.

Цена письменных столов возрастает до 70 грн., а цена стула снижается до 18 грн.

Будет ли текущий базис оптимальным? Каково новое значение целевой функции?

Решение (второй случай).

Рассчитаем
$$\Delta c_j$$
 и найдем $\sum_{j=1}^{\infty} r_j$

$$\Delta c_1 = 70 - 60 = 10$$
 $I_1 = 20$ $r_1 = \frac{10}{20} = 0.5$

$$\Delta c_3 = 18 - 20 = -2$$
 $D_3 = 5$ $r_3 = -\frac{(-2)}{5} = 0.4$

$$\Delta c_2 = 0 \qquad r_2 = 0$$

$$r_1 + r_2 + r_3 = 0.9 < 1$$

 $280 + 2 \times 10 - 8 \times 2 = 284$ грн.

Пример 4.

Что произойдет, если цена за кухонные столы возрастет до 33 грн., а цена письменных столов упадет до 58 грн.?

Решение (второй случай).

Рассчитаем
$$\Delta c_j$$
 и найдем $\sum_{j=1}^{3} r_j$

$$\Delta c_1 = 58 - 60 = -2$$
 $D_1 = 4$
 $r_1 = -\frac{(-2)}{4} = 0.5$
 $\Delta c_2 = 33 - 30 = 3$
 $I_2 = 5$
 $r_2 = \frac{3}{5} = 0.6$
 $\Delta c_3 = 0$

$$r_1 + r_2 + r_3 = 1.1 > 1$$

ИЗМЕНЕНИЕ ПРАВЫХ ЧАСТЕЙ ОГРАНИЧЕНИЙ

1 случай

Все ограничения, чьи правые части были изменены, являются несвязующими (неактивными).

2 случай

По крайней мере, одно из ограничений, чьи правые части были модифицированы, является связующим (активным).

Пример 5.

Потребность в калориях снижается до 400, а потребность в жирах возрастает до 100 граммов.

Будет ли текущий базис оставаться неизменным? Каково новое оптимальное решение?

Решение

1-й случай

Пределы изменений ограничений:

- -∞ ≤ потребность в калориях ≤ 750
- -∞ ≤ потребность в жирах ≤ 130

$$-\infty \le 400 \le 750$$

$$-\infty \le 100 \le 130$$

Пример 6.

• Потребность в калориях снизилась до 400, а потребность в жирах возросла до 150 граммов.

• Будет ли текущий базис оптимальным?

Второй случай. Обозначения

 b_i — текущее значение правой части i-го ограничения;

 Δb_i – изменение b_i ;

 I_i — максимально возможное увеличение b_i ;

 D_i – максимально допустимое снижение $b_{i,\cdot}$

Расчетные формулы

$$r_i = \frac{\Delta b_i}{I_i}$$
, если $\Delta b_i > 0$,

$$r_i = \frac{-\Delta b_i}{D_i}$$
, если $\Delta b_i < 0$,

$$r_i = 0$$
 , если b_i не меняется.

$$\sum_{i=1}^{m} r_i \leq 1 \implies$$
 базис останется оптимальным

$$\sum_{i=1}^{m} r_{i} > 1$$
 \Rightarrow базис может перестать быть оптимальным

Пример 7.

Пусть в распоряжении фабрики имеются 22 часа на отделочные работы и 9 часов на столярные работы.

Будет ли текущий базис оставаться оптимальным?

Решение (2-й случай).

Рассчитаем Δb_{i} и \mathcal{V}_{i}

$$\Delta b_1 = 0 \qquad r_1 = 0$$

$$\Delta b_2 = 22 - 20 = 2$$
 $I_2 = 4$ $r_2 = \frac{2}{4} = 0.5$

$$\Delta b_3 = 9 - 8 = 1$$
 $I_3 = 2$ $r_3 = \frac{1}{2} = 0.5$

$$r_1 + r_2 + r_3 = 1$$

Пример 8.

• Потребность в шоколаде возрастает до 8 граммов, а потребность в сахаре снижается 7 граммов.

• Будет ли текущий базис оптимальным?

Решение (второй случай).

$$\Delta b_1 = \Delta b_4 = 0$$

$$r_1 = r_4 = 0$$

$$\Delta b_2 = 8 - 6 = 2$$
 $I_2 = 4$ $r_2 = \frac{2}{4} = 0.5$

$$I_{2} = 4$$

$$r_2 = \frac{2}{4} = 0.5$$

$$\Delta b_3 = 7 - 10 = -3$$

$$D_3=4$$

$$\Delta b_3 = 7 - 10 = -3$$
 $D_3 = 4$ $r_3 = -\frac{(-3)}{4} = 0.75$

$$r_1 + r_2 + r_3 = 1.25 > 1$$