Первая теорема двойственности

• Если одна из пары двойственных задач имеет оптимальное решение, то другая также имеет оптимальное решение, причем для любых оптимальных решений выполняется равенство

$$Z_{\text{max}}(x) = W_{\text{min}}(y)$$

Доказательство

Рассмотрим симметричную пару двойственных задач

Прямая

$$\max Z = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n$$

$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \le b_1$

$$a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n \le b_2$$

$$a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n \le b_i$$

$$a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n \le b_m$$

$$x_j \ge 0$$
, $j = 1, n$

Двойственная

$$\min W = b_1 y_1 + b_2 y_2 + \ldots + b_m y_m$$

$$a_{11}y_1 + a_{21}y_2 + \ldots + a_{m1}y_m \ge c_1$$

$$a_{12}y_1 + a_{22}y_2 + \ldots + a_{m2}y_m \ge c_2$$

$$a_{1j}y_1 + a_{2j}y_2 + \ldots + a_{mj}y_m \ge c_j$$

$$a_{1n}y_1 + a_{2n}y_2 + \ldots + a_{mn}y_m \ge c_n$$

$$y_i \ge 0, \quad i = \overline{1,m}$$

$$\max Z = c_{1}x_{1} + c_{2}x_{2} + \dots + c_{n}x_{n},$$

$$a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} + S_{1} = b_{1},$$

$$a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} + S_{2} = b_{2},$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{i1}x_{1} + a_{i2}x_{2} + \dots + a_{in}x_{n} + S_{i} = b_{i},$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n} + S_{m} = b_{m},$$

$$x_{j} \geq 0, \quad j = \overline{1, n}, \quad S_{i} \geq 0, \quad i = \overline{1, m}.$$

Пусть BV – оптимальный базис прямой задачи

Определим
$$C_{BV}B^{-1} = [y_1 \ y_2 \ \dots \ y_m]$$

Для оптимального базиса BV, y_{i} –

это *i*-й элемент из $\,C_{_{BV}}B^{^{-1}}$

Покажем, что $C_{{\scriptscriptstyle BV}}B^{{\scriptscriptstyle -1}}$ – допустимый базис двойственной задачи

Для базиса BV все $\widetilde{c}_{_{i}} \geq 0$

$$\widetilde{c}_{j} = C_{BV}B^{-1}a_{j} - c_{j}$$

Подставим $C_{BV}B^{-1} = [y_1 \ y_2 \ \dots \ y_m]$

$$\begin{bmatrix} y_1 & y_2 & \dots & y_m \end{bmatrix} \cdot \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix} - c_j =$$

$$= a_{1j}y_1 + a_{2j}y_2 + ... + a_{mj}y_m - c_j$$

$$a_{1j}y_1 + a_{2j}y_2 + \ldots + a_{mj}y_m - c_j \ge 0$$

ИЛИ

$$a_{1j}y_1 + a_{2j}y_2 + \ldots + a_{mj}y_m \ge c_j$$

Таким образом, $C_{\mathit{BV}}B^{-1}$ удовлетворяет каждому из n двойственных ограничений

Кроме того, $y_i \ge 0$ для всех i=1,m

Следовательно, $C_{BV}B^{-1}$ – двойственное допустимое решение

Оптимальное значение целевой функции

прямой задачи для базиса $\,BV\,$ равно

$$Z_{opt.} = C_{BV}B^{-1}b$$

Для двойственного допустимого решения

$$C_{\scriptscriptstyle BV}B^{-1}$$

значение целевой функции равно

$$b_{1}y_{1} + b_{2}y_{2} + \dots + b_{m}y_{m} = \begin{bmatrix} y_{1} & y_{2} & \dots & y_{m} \end{bmatrix} \cdot \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{m} \end{bmatrix} = C_{BV}B^{-1}b$$

На основании леммы 2

$$Z_{\max}(x) = W_{\min}(y)$$

Как прочесть оптимальное решение двойственной задачи из строки целевой функции окончательной таблицы основной задачи с критерием на максимум?

Оптимальное значение двойственной y_i , если i-е ограничение типа $\langle\!\langle \leq \rangle\!\rangle$

Коэффициенту при S_i в окончательной таблице в строке целевой функции

Оптимальное значение двойственной переменной y_i , если *i-*е ограничение типа « \geq »

Коэффициенту при \mathcal{C}_i в окончательной = таблице в строке целевой функции, умноженному на -1

Оптимальное значение двойственной y_i , переменной y_i , если *i-*е ограничение типа «=»

Коэффициенту при $= a_i$ в окончательной таблице в строке целевой функции - M

Пример

$$max Z = 3x_1 + 2x_2 + 5x_3$$

$$x_1 + 3x_2 + 2x_3 \le 15$$

$$2x_2 - x_3 \ge 5$$

$$2x_1 + x_2 - 5x_3 = 10$$

$$x_1, x_2, x_3 \ge 0$$

Ба- зис	c _j	b _i	x ₁	X ₂	X ₃	S ₁	e ₂	a ₂	a ₃
			3	2	5	0	0	-M	-M
X ₃	5	15/ 23	0	0	1	4/23	5/23	-5/23	-2/23
x ₂	2	65/ 23	0	1	0	2/23	-9/23	9/23	-1/23
x ₁	3	120 /23	1	0	0	9/23	17/23	-17/23	7/23
Z-c _j	_	565 /23	0	0	0	51/23	58/23	-58/23	9/23

Двойственная задача

$$\min W = 15y_1 + 5y_2 + 10y_3$$

$$y_1 + 2y_3 \ge 3$$

$$3y_1 + 2y_2 + y_3 \ge 2$$

$$2y_1 - y_2 - 5y_3 \ge 5$$

$$y_1 \ge 0, \ y_2 \le 0$$

у₃ – неограниченная на знак переменная

$$W = \frac{565}{23}$$

$$y_3 = \frac{9}{23}$$

$$y_2 = -\frac{58}{23}$$

$$y_1 = \frac{51}{23}$$

Теневые цены и их свойства

Определение

• Теневая цена (двойственная оценка) і-го ограничения – это величина, на которую улучшится оптимальное значение целевой функции (увеличится при решении задачи на максимум и уменьшится при решении задачи на минимум), если мы увеличим значение b_{\cdot} на единицу (с b_{i} до b_{i} +1), при условии, что текущий базис останется оптимальным.

Свойство 1

• Мера дефицитности продукции и ресурсов

Следствие

• Теневая цена – мера взаимозаменяемости ресурсов и продукции

Свойство 2

• Мера влияния ограничений на целевую функцию

$$Z_{opt}^{{\scriptscriptstyle HOB}} = Z_{opt} + \Delta b_{\scriptscriptstyle i} \times$$

 \times (двойственная оценка i - го ограничения)

$$Z_{opt}^{\scriptscriptstyle HOB} = Z_{\scriptscriptstyle opt} - \Delta b_{\scriptscriptstyle i} \times$$

 \times (двойственная оценка i - го ограничения)

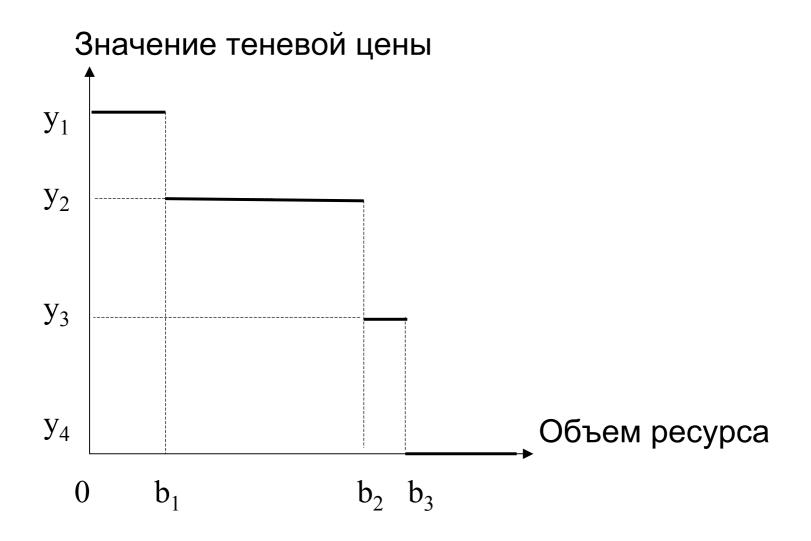
$$\Delta Z = Z_{opt}^{{\scriptscriptstyle HOB}} - Z_{opt} = Z_{opt} + \Delta b_{\scriptscriptstyle i} \times y_{\scriptscriptstyle i} - Z_{opt} = \Delta b_{\scriptscriptstyle i} \times y_{\scriptscriptstyle i}$$

$$y_{i} = \frac{\Delta Z}{\Delta b_{i}}$$

$$y_{i} = \frac{dZ}{db_{i}}$$

Теневые цены равны значениям частных производных линейной функции $Z(b_1,b_2,...b_m)$ по соответствующим аргументам $\begin{pmatrix} b_i, i=\overline{1,m} \end{pmatrix}$

Ступенчатость изменения теневой цены



Свойство 3

• Мера эффективности новых способов производства, новых видов продукции и т.д.

Свойство 4

• Мера балансирования затрат и результатов

• Единицы измерения теневых цен определяются с учетом единиц измерения целевой функции и соответствующего ограничения

Пример

Для задачи по мебельной фабрике:

1. Определите и дайте интерпретацию теневых цен.

2. Каким будет доход мебельной фабрики, если на участке отделки будет 18 часов рабочего времени?

3. Каким будет доход фабрики, если в ее распоряжении будет 9 часов рабочего времени на столярном участке?

- 4. Каким будет доход фабрики, если в ее распоряжении имеется 30 м² древесины?
- 5. Если на столярном участке будут доступны 30 часов времени, то почему нельзя использовать двойственные оценки для расчета нового значения целевой функции?

Огра- ни- чение	Теку- щее значе- ние	Тене- вая цена	Недо- выполнение /пере- выполнение	Мин. значе- ние ПЧО	Макс. значение ПЧО
1)	≤ 48	0	24	24	∞
2)	≤ 20	10	0	16	24
3)	≤ 8	10	0	6.67	10

ДВОЙСТВЕННЫЙ СИМПЛЕКС МЕТОД

Шаг 1. Проверяем, все ли правые части ограничений неотрицательны? Если да, то оптимальное решение найдено. Если нет, то, по крайней мере, одно ограничение имеет отрицательную правую часть. В этом случае переходим к шагу 2.

Шаг 2. В качестве переменной, покидающей базис, выбираем ту, у которой наибольший (по модулю) отрицательный коэффициент. Строка, в которой эта базисная переменная находится, называется разрешающей. Для каждой переменной, имеющей отрицательный

рассчитывается отношение

коэффициент в разрешающей строке,

Коэффициен т при x_j в строке целевой функции

Отрицатель ный коэффициен т при x_{j} в разрешающе й строке

Выбирается переменная с наименьшим (по абсолютной величине) отношением, как переменная, входящая в базис.

Выполняются эквивалентные преобразования Жордана-Гаусса для того чтобы входящую переменную сделать базисной.

Шаг 3.

Если найдется хотя бы одно ограничение, в котором правая часть отрицательная, а все переменные имеют неотрицательные коэффициенты, то задача линейного программирования не имеет допустимого решения. Если ни в одном ограничении нет недопустимости, то переходим к шагу 1.

$$x_1 + 2x_2 + x_3 = -5$$

Пример

$$\min W = 100y_1 + 80y_2 + 40y_3$$

$$2y_1 + y_2 + y_3 \ge 3$$

$$y_1 + y_2 \ge 2$$

$$y_1, y_2, y_3 \ge 0$$

Стандартная форма задачи

$$\min W = 100y_1 + 80y_2 + 40y_3,$$

$$2y_1 + y_2 + y_3 - e_1 = 3,$$

$$y_1 + y_2 - e_2 = 2,$$

$$y_1, y_2, y_3, e_1, e_2 \ge 0.$$

$$\max W^1 = -100y_1 - 80y_2 - 40y_3$$

$$-2y_{1}-y_{2}-y_{3}+e_{1} = -3$$

$$-y_{1}-y_{2} + e_{2} = -2$$

$$y_{1}, y_{2}, y_{3}, e_{1}, e_{2} \ge 0$$

Базис	c c _j	b _i	У ₁	У ₂	у ₃	e ₁	e ₂
		ľ	-100	-80	-40	0	0
e ₁	0	-3	-2	-1	-1	1	0
e ₂	0	-2	-1	-1	0	0	1
	_	0	100	80	40	0	0
OTH	_	_	-50	-80	-40	_	_

Базис	IC C _j	b _i	y ₁	У ₂	у ₃	e ₁	e ₂
		•	-100	-80	-40	0	0
y ₃	- 40	3	2	1	1	-1	0
e ₂	0	-2	-1	-1	0	0	1
W^1-c_j	_	-120	20	40	0	40	0
OTH		_	-20	-40	_	_	

Базис	C _i	b _i	y ₁	У ₂	у ₃	e ₁	e ₂
	or of		-100	-80	-40	0	0
y ₃	- 40	-1	0	-1	1	-1	2
y ₁	-100	2	1	1	0	0	-1
$W^{\scriptscriptstyle 1}-c_{\scriptscriptstyle j}$	_	-160	0	20	0	40	20
OTH	_	_	_	-20	_	-40	_

Базис	C _j	b _i	y ₁	y ₂	у ₃	e ₁	e ₂
	J		-100	-80	-40	0	0
У ₂	-80	1	0	1	-1	1	-2
y ₁	-100	1	1	0	1	-1	1
W^1-c_j	_	-180	0	0	20	20	60

Оптимальное решение

$$W^{1} = -180$$
, $W = 180$, $y_{1} = y_{2} = 1$, $y_{3} = 0$

НАХОЖДЕНИЕ НОВОГО ОПТИМАЛЬНОГО РЕШЕНИЯ ПОСЛЕ ДОБАВЛЕНИЯ ОГРАНИЧЕНИЯ В МОДЕЛЬ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

• Возможны случаи

Текущее оптимальное решение удовлетворяет новому ограничению.

Текущее оптимальное решение не удовлетворяет новому ограничению, но задача линейного программирования все еще имеет допустимое решение.

Дополнительное ограничение приводит к тому, что задача линейного программирования не будет иметь допустимого решения.

1 случай

$$x_1 + x_2 + x_3 \le 11$$

2 случай

$$x_{2} \ge 1 \longrightarrow x_{2} - e_{4} = 1$$

$$-x_{2} + e_{4} = -1$$

Ба-	C. D.	b _i	X ₁	X ₂	X ₃	S ₁	S ₂	S ₃	e ₄
ЗИС	J	'	60	30	20	0	0	0	0
S ₁	0	24	0	-2	0	1	2	-8	0
X ₃	20	8	0	-2	1	0	2	-4	0
x ₁	60	2	1	1.25	0	0	-0.5	1.5	0
e ₄	0	-1	0	-1	0	0	0	0	1
Z-c _j	_	280	0	5	0	0	10	10	0

Ба-	C. D	b _i	X ₁	X ₂	X ₃	S ₁	S ₂	S ₃	e ₄
ЗИС	J	·	60	30	20	0	0	0	0
S ₁	0	26	0	0	0	1	2	-8	-2
x ₃	20	10	0	0	1	0	2	-4	-2
X ₁	60	0.75	1	0	0	0	-0.5	1.5	1.25
X ₂	30	1	0	1	0	0	0	0	-1
Z-c _j	_	275	0	0	0	0	10	10	5

3 случай

Ба-	C.	b _i	X ₁	X ₂	X ₃	S ₁	S ₂	S ₃	e ₄
ЗИС	J		60	30	20	0	0	0	0
S ₁	0	24	0	-2	0	1	2	-8	0
X ₃	20	8	0	-2	1	0	2	-4	0
X ₁	60	2	1	1.25	0	0	-0.5	1.5	0
e ₄	0	-12	–1	_1	0	0	0	0	1
Z-c _j	_	280	0	5	0	0	10	10	0

Ба-	C	b _i	X ₁	X ₂	X ₃	S ₁	S ₂	S ₃	e ₄
ЗИС	J	•	60	30	20	0	0	0	0
S ₁	0	24	0	-2	0	1	2	-8	0
X ₃	20	8	0	-2	1	0	2	-4	0
X ₁	60	2	1	1.25	0	0	-0.5	1.5	0
e ₄	0	-10	0	0.25	0	0	-0.5	1.5	1
Z-c _j	_	280	0	5	0	0	10	10	0

Ба-	C.,	b _i	X ₁	X ₂	x ₃	S ₁	S ₂	S ₃	e ₄
ЗИС	J		60	30	20	0	0	0	0
S ₁	0	-16	0	-1	0	1	0	-2	4
X ₃	20	-32	0	-1	1	0	0	2	4
X ₁	60	12	1	1	0	0	0	0	-1
S ₂	0	20	0	-0.5	0	0	1	-3	-2
Z-c _j	_	80	0	10	0	0	0	40	20

Ба-	c _j b _i	X ₁	x ₂	X ₃	S ₁	S ₂	S ₃	e ₄	
ЗИС	J	·	60	30	20	0	0	0	0
S ₁	0	16	0	0	-1	1	0	-4	0
x ₂	30	32	0	1	_1	0	0	-2	-4
x ₁	60	-20	1	0	1	0	0	2	3
S ₂	0	36	0	0	-0.5	0	1	-4	-4
Z-c _j	_	-240	0	0	10	0	0	60	60

Дополняющая нежесткость (вторая теорема двойственности)

Пусть
$$X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 — допустимое решение

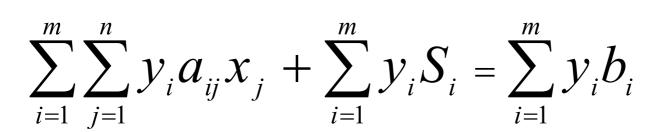
основной задачи, а $Y = \begin{bmatrix} y_1 & y_2 & \cdots & y_m \end{bmatrix}$ — допустимое решение двойственной задачи.

Тогда X — оптимальное решение основной задачи, а Y — оптимальное решение двойственной задачи тогда и только тогда, когда

$$S_i y_i = 0, \quad i = \overline{1, m},$$
 $e_i x_i = 0, \quad j = \overline{1, n}.$

1. Умножим *i-*е ограничение основной задачи на y_i

$$y_i \cdot a_{i1} \cdot x_1 + y_i \cdot a_{i2} \cdot x_2 + \dots + y_i \cdot a_{in} \cdot x_n + y_i \cdot S_i = y_i \cdot b_i$$



2. Умножим *j*—е ограничение двойственной задачи на x_j

$$x_{j} \cdot a_{1j} \cdot y_{1} + x_{j} \cdot a_{2j} \cdot y_{2} + \cdots + x_{j} \cdot a_{mj} \cdot y_{m} - x_{j} \cdot e_{j} = x_{j} \cdot c_{j}$$

$$\sum_{i=1}^{m} \sum_{j=1}^{n} y_i a_{ij} x_j - \sum_{j=1}^{n} x_j e_j = \sum_{j=1}^{n} x_j c_j$$

3. Вычтем из результата первого пункта результат второго пункта.

$$\sum_{i=1}^{m} y_{i} S_{i} + \sum_{j=1}^{n} x_{j} e_{j} = \sum_{i=1}^{m} y_{i} b_{i} - \sum_{j=1}^{n} x_{j} c_{j}$$

На основании 1-й теоремы двойственности: если *X* – оптимальное решение основной задачи и *Y* – оптимальное решение двойственной задачи, то

$$\sum_{i=1}^{m} y_{i} S_{i} + \sum_{j=1}^{n} x_{j} e_{j} = 0$$

$$\sum_{i=1}^{m} y_i S_i = 0$$
 и $\sum_{j=1}^{n} x_j e_j = 0$

Следовательно,

$$y_i S_i = 0$$
 $x_j e_j = 0.$

Если условия $y_i S_i = 0$ и $x_j e_j = 0$ выполняются для $i = \overline{1,m}$ и $j = \overline{1,n}$, то X и Y – оптимальные решения основной и двойственной задач, соответственно.

Таким образом,

$$0 = \sum_{i=1}^{m} y_i b_i - \sum_{j=1}^{n} x_j c_j$$

Отсюда

$$\sum_{i=1}^m y_i b_i = \sum_{j=1}^n x_j c_j$$

Если значение какой-либо переменной допустимого решения одной задачи отлично от нуля, то допустимое решение двойственной задачи обращает в строгое равенство, соответствующее этой переменной, ограничение

Если допустимое решение одной задачи обращает в строгое неравенство некоторое ограничение этой задачи, то в допустимом решении двойственной задачи равна нулю переменная, соответствующая этому ограничению

Из
$$y_i \cdot S_i = 0$$
 $\left(i = \overline{1,m}\right)$ следует

* i—я дополняющая предполагает, что i—я двойственная переменная основной задачи > 0 = 0 ** i—я двойственная предполагает, что i—я переменная > 0 дополняющая переменная = 0

Из
$$e_i \cdot x_j = 0$$
 $\left(j = \overline{1, n}\right)$ следует

*** *j*—я избыточная переменная двойственной задачи > 0

предполагает, что j—я основная переменная = 0

*** *j*—я переменная основной * задачи > 0 *j*—я избыточная переменная двойственной задачи = **0**

Если в любой из задач (основной или двойственной) ограничение является несвязующим (т.е. $S_{\scriptscriptstyle i}>0$ или $e_{\scriptscriptstyle i}>0$), то соответствующая переменная в дополняющей ее проблеме должна быть равной нулю.

Пример

$$\max Z = 60x_1 + 30x_2 + 20x_3$$

$$8x_1 + 6x_2 + x_3 \le 48$$

$$4x_1 + 2x_2 + 1.5x_3 \le 20$$

$$2x_1 + 1.5x_2 + 0.5x_3 \le 8$$

$$x_1, x_2, x_3 \ge 0$$

$$\min W = 48y_1 + 20y_2 + 8y_3$$

$$8y_1 + 4y_2 + 2y_3 \ge 60$$

$$6y_1 + 2y_2 + 1.5y_3 \ge 30$$

$$y_1 + 1.5y_2 + 0.5y_3 \ge 20$$

$$y_1, y_2, y_3 \ge 0$$

Оптимальные решения

основная задача

$$Z = 280, x_1 = 2, x_2 = 0, x_3 = 8$$

 $S_1 = 48 - (8 \cdot 2 + 6 \cdot 0 + 1 \cdot 8) = 24$
 $S_2 = 20 - (4 \cdot 2 + 2 \cdot 0 + 1.5 \cdot 8) = 0$
 $S_3 = 8 - (2 \cdot 2 + 1.5 \cdot 0 + 0.5 \cdot 8) = 0$

двойственная задача

$$W = 280, y_1 = 0, y_2 = 10, y_3 = 10$$

$$e_1 = (8 \cdot 0 + 4 \cdot 10 + 2 \cdot 10) - 60 = 0$$

$$e_2 = (6 \cdot 0 + 2 \cdot 10 + 1.5 \cdot 10) - 30 = 5$$

$$e_3 = (1 \cdot 0 + 1.5 \cdot 10 + 0.5 \cdot 10) - 20 = 0$$

$$y_i \cdot S_i = 0$$
 $i = 1, m$

$$i = 1, m$$

сводится к

$$y_1 \cdot S_1 = 0 \cdot 24 = 0$$

$$y_2 \cdot S_2 = 10 \cdot 0 = 0$$

$$y_3 \cdot S_3 = 10 \cdot 0 = 0$$

$$e_i \cdot x_j = 0$$
 $j = \overline{1,n}$ сводится к

$$e_1 \cdot x_1 = 0 \cdot 2 = 0$$

$$e_2 \cdot x_2 = 5 \cdot 0 = 0$$

$$e_3 \cdot x_3 = 0 \cdot 8 = 0$$