Тема 4

ТРАНСПОРТНАЯ ЗАДАЧА

ЗАДАЧА О НАЗНАЧЕНИЯХ

Постановка транспортной задачи

1. Имеется сеть пунктов-поставщиков (m), каждый из которых может поставить S_i единиц продукции.

2. Имеется сеть пунктов-потребителей (n), каждый из которых потребляет d_j единиц продукции.

Постановка транспортной задачи

3. Затраты на производство единицы продукции в пункте i и ее доставку в пункт j составляют c_{ij} .

Необходимо определить такое закрепление поставщиков за потребителями продукции, при котором обеспечивается удовлетворение потребности в ней в каждом пункте при минимуме затрат на производство и доставку.

 $m{\chi}_{ij}$ — количество груза, перевозимого от i-го поставщика j-му потребителю

Модель транспортной задачи

Целевая функция:

$$\min Z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

Ограничения:

1. По возможностям поставщиков

$$\sum_{j=1}^{n} x_{ij} \leq S_i, \quad i = \overline{1,m}$$

2. По потребностям потребителей

$$\sum_{i=1}^{m} x_{ij} \ge d_j, \quad j = \overline{1,n}$$

3. На знак переменных

$$x_{ij} \ge 0$$
; $i = \overline{1,m}$; $j = \overline{1,n}$

Особенности транспортной задачи

1. Присутствие всех переменных в целевой функции;

2. Наличие единичных коэффициентов при переменных в ограничениях;

Особенности транспортной задачи

3. Каждая переменная принятия решений встречается только в двух ограничениях модели;

4. Система ограничений является симметричной относительно всех переменных.

Типы транспортной задачи

1. Закрытая

$$\sum_{i=1}^{m} S_i = \sum_{j=1}^{n} d_j$$

2. Открытая

$$\sum_{i=1}^{m} S_i \neq \sum_{j=1}^{n} d_j$$

Сведение открытой транспортной задачи к закрытому виду

Если
$$\sum_{i=1}^{m} S_i > \sum_{j=1}^{n} d_j$$
 \Longrightarrow фиктивный потребитель

$$d_{\phi u \kappa m.} = \sum_{i=1}^{m} S_i - \sum_{j=1}^{n} d_j$$

Сведение открытой транспортной задачи к закрытому виду

$$\sum_{i=1}^m S_i < \sum_{j=1}^n d_j \implies$$
фиктивный поставщик

$$S_{\phi u \kappa m.} = \sum_{j=1}^{n} d_j - \sum_{i=1}^{m} S_i$$

Компания, производящая электроэнергию, имеет 3 электростанции и поставляет ее в 4 города. Каждая электростанция может поставить следующее количество кВт.-часов электроэнергии:

1 — 35 млн., 2 — 50 млн., 3 — 40 млн. Пиковая потребность каждого из городов приходится на 2 часа дня и составляет (в кВт.-часах):

1-45 млн., 2-20 млн., 3-30 млн., 4-30 млн.

Стоимость передачи 1 млн. кВт.-часов электроэнергии от электростанции до города зависит от расстояния. Исходные данные приведены в таблице.

Электро- станция	Город				Постав- ка
	1	2	3	4	
1	8	6	10	9	35
2	9	12	13	7	50
3	14	9	16	5	40
Потребность	45	20	30	30	

Сформулируйте модель линейного программирования для минимизации стоимости передачи электроэнергии от электростанций до городов в часы пик.

Решение

 x_{ij} — количество млн. кBт.-часов электроэнергии, производимое на электростанции i и передаваемое городу j

Целевая функция

Общие затраты на передачу электроэнергии от всех электростанций всем городам в период пиковой потребности должны быть минимальными:

$$min \ Z = 8x_{11} + 6x_{12} + 10x_{13} + 9x_{14} +$$

$$+ 9x_{21} + 12x_{22} + 13x_{23} + 7x_{24} +$$

$$+ 14x_{31} + 9x_{32} + 16x_{33} + 5x_{34}$$

Ограничения

1) Поставка электроэнергии с каждой электростанции не должна превысить ее мощности:

$$x_{11} + x_{12} + x_{13} + x_{14} \le 35$$

$$x_{21} + x_{22} + x_{23} + x_{24} \le 50$$

$$x_{31} + x_{32} + x_{33} + x_{34} \le 40$$

2) Каждый город должен получить достаточное количество электроэнергии в час пик:

$$x_{11} + x_{21} + x_{31} \ge 45$$

$$x_{12} + x_{22} + x_{32} \ge 20$$

$$x_{13} + x_{23} + x_{33} \ge 30$$

$$x_{14} + x_{24} + x_{34} \ge 30$$

3) Ограничения на знак переменных:

$$x_{ij} \ge 0$$

$$i = \overline{1,3}$$

$$j = \overline{1,4}$$

Теорема

• Ранг матрицы коэффициентов при переменных в транспортной задаче на единицу меньше числа ограничений:

$$r(A) = m + n - 1$$

Доказательство

• Рассмотрим задачу с двумя поставщиками и тремя потребителями продукции.

Переменные задачи:

$$x_{11}, x_{12}, x_{13}, x_{21}, x_{22}, x_{23}$$

Матрица системы ограничений:

$$A = egin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 1 & 1 \ 1 & 0 & 0 & 1 & 0 & 0 \ 0 & 1 & 0 & 0 & 1 & 0 \ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$
 - строка \overline{A}_1 - строка \overline{A}_2 - строка \overline{A}_3 - строка \overline{A}_4 - строка \overline{A}_5

• Сложим первые две и последние три строки. Получим:

$$\overline{A}_1 + \overline{A}_2 = \overline{A}_3 + \overline{A}_4 + \overline{A}_5$$

$$(1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1) = (1 \quad 1 \quad 1 \quad 1 \quad 1)$$

3аключение: любая строка матрицы A

может быть выражена через другие, т.е.

представлена в виде их линейной

комбинации.

Например:

$$\overline{A}_1 = \overline{A}_3 + \overline{A}_4 + \overline{A}_5 - \overline{A}_2$$
или
 $\overline{A}_4 = \overline{A}_1 + \overline{A}_2 - (\overline{A}_3 + \overline{A}_5)$

Т.о., строки матрицы линейно зависимы

• Ранг системы векторов равен максимальному числу линейно независимых векторов, т.е.

$$r(A)=m+n-1$$

• Так как ранг системы векторов определяет число базисных переменных системы ограничений, то можно заключить, что для транспортной задачи оно будет равно:

$$m+n-1$$

ПРИЕМЫ НАХОЖДЕНИЯ БАЗИСНОГО ДОПУСТИМОГО РЕШЕНИЯ ТРАНСПОРТНОЙ ЗАДАЧИ

- 1. северо-западного угла
- 2. минимальной стоимости в строке (в столбце)
- 3. минимальной стоимости в таблице
- 4. двойного предпочтения
- 5. метод Фогеля и др.

Прием северо-западного угла

Исходная таблица:

	d ₁ = 45	d ₂ = 20	$d_3 = 30$	$d_4 = 30$
$S_1 = 35$	35	6	10	9
$S_2 = 50$	9	12	13	7
$S_3 = 40$	14	9	16	5

$$x_{11} = min \{35, 45\} = 35$$

	d ₁ = 45	$\mathbf{d_2} = 20$	$d_3 = 30$	$d_4 = 30$
$S_1 = 35$	8 35	6	10	9
$S_2 = 50$	9 10	12	13	7
$S_3 = 40$	14	9	16	5

$$x_{21} = min \{50, 10\} = 10$$

	d ₁ = 45	$\mathbf{d_2} = 20$	$d_3 = 30$	$d_4 = 30$
$S_1 = 35$	35	6	10	9
$S_2 = 50$	9 10	12 20	13 20	7
$S_3 = 40$	14	9	16 10	30

Исходное базисное допустимое решение:

$$BV = \{x_{11}, x_{21}, x_{22}, x_{23}, x_{33}, x_{34}\}$$

Метод потенциалов

• Шаг 1. Приводим задачу к закрытому

виду (если в этом есть необходимость).

• Шаг 2. Получаем исходное базисное решение. Число заполненных клеток должно быть равно m+n-1. Если число заполненных клеток меньше m+n-1, то недостающее количество клеток заполняем нулями (условными поставками).

• <u>Шаг 3.</u> Проверяем полученное решение на оптимальность. Для этого рассчитываем потенциалы поставщиков u_i и потребителей v_j с учетом заполненных клеток и условия:

$$u_i + v_j = c_{ij}$$

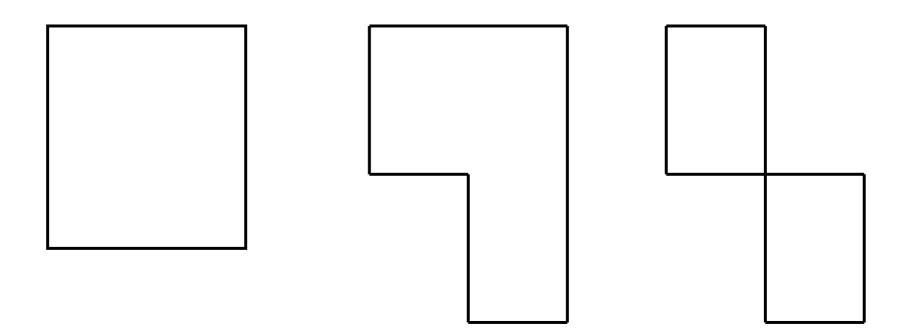
Для небазисных переменных (незаполненных клеток) рассчитываем оценки оптимальности, используя выражение:

$$u_i + v_j - c_{ij} = \widetilde{c}_{ij}$$

Сравниваем полученные оценки \widetilde{c}_{ij} с нулем. Если все $\widetilde{c}_{ij} \leq 0$ (для задачи на минимум), то получено оптимальное решение. Если хотя бы одна $\widetilde{c}_{ij} > 0$, то переходим к шагу 4.

• Шаг 4. Среди оценок $\widetilde{c}_{ij} > 0$ выбираем ту, у которой значение больше. Переменная, соответствующая данной оценке \widetilde{C}_{ij} , переходит в базисные. Строим цикл пересчета для определения значения переменной, входящей в базис, переменной, покидающей базис значений скорректированных величин поставок для остальных базисных переменных цикла. Переходим к шагу 3.

Типы конфигураций циклов пересчета:



Определение величины перепоставки груза:

$$\Theta = \min_{(i,j) \in \mathit{yukny}} \left\{ x_{ij}^{(-\Theta)} \right\}$$

Исходное допустимое базисное решение:

	d ₁ = 45	d ₂ = 20	$d_3 = 30$	$d_4 = 30$
$S_1 = 35$	8 35	6	10	9
$S_2 = 50$	9 10	12 20	13 20	7
$S_3 = 40$	14	9	16 10	30

$$Z_1 = 8 \times 35 + 9 \times 10 + 12 \times 20 + 13 \times 20 + 16 \times 10 + 5 \times 30 = 1180$$

Расчет потенциалов:

$$u_{1} = 0$$

 $u_{1} + v_{1} = c_{11} = 8 \implies v_{1} = 8$
 $u_{2} + v_{1} = c_{21} = 9 \implies u_{2} = 1$
 $u_{2} + v_{2} = c_{22} = 12 \implies v_{2} = 11$
 $u_{2} + v_{3} = c_{23} = 13 \implies v_{3} = 12$
 $u_{3} + v_{4} = c_{33} = 16 \implies u_{3} = 4$
 $u_{3} + v_{4} = c_{34} = 5 \implies v_{4} = 1$

Расчет оценок оптимальности:

$$\widetilde{c}_{24} = 1 + 1 - 7 = -5$$
 $\widetilde{c}_{31} = 4 + 8 - 14 = -2$
 $\widetilde{c}_{32} = 4 + 11 - 9 = 6$
 $\widetilde{c}_{12} = 0 + 11 - 6 = 5$
 $\widetilde{c}_{13} = 0 + 12 - 10 = 2$
 $\widetilde{c}_{14} = 0 + 1 - 9 = -8$

	d ₁ =45	d ₂ =20	d ₃ =30	d ₄ =30	u_{i}
S ₁ =35	3 5	11 6 11-6=5	12 10 12-10=2	1 9 1-9=-8	0
S ₂ =50	9 10	12 20	13 20	2 7 2-7=-5	1
S ₃ =40	12 14 12-14=-2	15 9 15-9=6	16 10	30	4
v_{j}	8	11	1	1	

	d ₁ =45	d ₂ =20	d ₃ =30	d ₄ =30	u_{i}
C 25	8	11 6	12 10	1 9	0
S ₁ =35	35	11-6=5	12-10=2	1-9=-8	0
$S_2 = 50$	9	12	13	2 7	
	10	20	20	2-7=-5	1
G 40	12 14	15 9	16	5	4
S ₃ =40	12-14=-2	15–9=6	10	30	4
v_{j}	8	11	12	1	

$$20 - \Theta$$

$$+ \Theta$$

$$20 + \Theta$$

$$10 - \Theta$$

$$\Theta = \min \{20; 10\} = 10$$

	d ₁ =45	d ₂ =20	d ₃ =30	d ₄ =30
S ₁ =35	8 35	6	10	9
S ₂ =50	9 10	12 10	13 30	7
S ₃ =40	14	9 10	16	30

$$BV_2 = \{x_{11}, x_{21}, x_{22}, x_{23}, x_{32}, x_{34}\}$$

 $Z_2 = 8 \times 35 + 9 \times 10 + 12 \times 10 + 13 \times 30 + 9 \times 10 + 5 \times 30 = 1120$

	d ₁ =45	d ₂ =20	d ₃ =30	d ₄ =30	u_{i}
S ₁ =35	8	11 6	12 10	7 9	0
	35	11-6=5	12-10=2	7-9=-2	0
S ₂ =50	9	12	13 20	8 7	1
~2 • •	10	10	30	8-7=1	•
	6 14	9	10 16	5	
S ₃ =40	6-14=-8	10	10-16=-6	30	-2
v_{j}	8	11	12	7	

$$35 - \Theta$$
 $+ \Theta$ $10 - \Theta$

$$\Theta = \min \{35; 10\} = 10$$

	d ₁ =45	d ₂ =20	d ₃ =30	d ₄ =30
S ₁ =35	8 25	6 10	10	9
S ₂ =50	20	12	13 30	7
S ₃ =40	14	9 10	16	30

$$BV_3 = \{x_{11}, x_{12}, x_{21}, x_{23}, x_{32}, x_{34}\}$$

 $Z_3 = 8 \times 25 + 6 \times 10 + 9 \times 20 + 13 \times 30 + 9 \times 10 + 5 \times 30 = 1070$

	d ₁ =45	d ₂ =20	d ₃ =30	d ₄ =30	u_i
S ₁ =35	8	6	12 10	2 9	0
	25	10	12-10=2	2-9=-7	V
	9	7 12	13	3 7	
S ₂ =50	20	7-12=-5	30	3-7=-4	1
	11 14	9	15 16	5	_
S ₃ =40	11-14=-3	10	15-16=-1	30	3
v_{j}	8	6	12	2	

$$25 - \Theta$$
 $+ \Theta$ $20 + \Theta$ $30 - \Theta$

$$\Theta = \min \{25; 30\} = 25$$

	d ₁ =45	d ₂ =20	d ₃ =30	d ₄ =30
S ₁ =35	8	6 10	10 25	9
S ₂ =50	9 45	12	13 5	7
S ₃ =40	14	9 10	16	30

$$BV_4 = \{x_{12}, x_{13}, x_{21}, x_{23}, x_{32}, x_{34}\}$$

 $Z_4 = 6 \times 10 + 10 \times 25 + 9 \times 45 + 13 \times 5 + 9 \times 10 + 5 \times 30 = 1020$

	d ₁ =45	d ₂ =20	d ₃ =30	d ₄ =30	u_i
S ₁ =35	6 8 6-8=-2	6 10	10 25	2 9 2-9=-7	0
S ₂ =50	9 45	9 12 9-12=-3	13 5	5 7 5-7=-2	3
S ₃ =40	9 14 9-14=-5	9 10	13 16 13–16=–3	30	3
v_{j}	6	6	10	2	
$x_{12} = 10, x_1$	$_{3}=25,x_{21}=$	$=45, x_{23}=$	$5, x_{32} = 10,$	$x_{34} = 30, Z$	$Z^{opt.} = 1020$

• Замечание: наличие хотя бы одной нулевой оценки оптимальности $(\widetilde{c}_{ii}=0)$ в таблице с оптимальным решением свидетельствует о неединственности распределения поставок между поставщиками и потребителями, приносящего одно и то же значение целевой функции