Транспортная задача с перевалочными пунктами

- Склады
- Транспортные узлы (узловые станции)
- Промежуточные пункты хранения
- Промежуточные пункты переработки
- Ит.д.

Чтобы решить ТЗсПП необходимо

- Привести ее к закрытому виду
- Построить исходную транспортную таблицу, где перевалочные пункты представлены как в строках, так и в столбцах
- Определить величины поставок и потребностей в соответствии со следующими правилами

Правило определения величин поставок и потребностей

• Поставки от поставщиков = их возможностям по поставкам

• Потребности потребителей = их потребностям

Правило определения величин поставок и потребностей

- Поставки из промежуточных пунктов = суммарным поставкам + постави из данных пунктов
- Потребности промежуточных пунктов = суммарным поставкам + потребности данных пунктов

Пример

Имеются 3 отправителя и 2 получателя груза. Возможности поставщиков и потребности потребителей представлены в таблице

	Потребитель 1 (80)	Потребитель 2 (30)
Поставщик 1 (40)		
Поставщик 2 (30)		
Поставщик 3 (30)		

В процессе перевозки груза может быть использован 1 перевалочный пункт, потребность которого равна 10 единицам

Постройте исходную таблицу для решения транспортной задачи с перевалочными пунктами

Решение

1. Добавляем фиктивного поставщика с поставкой, равной (80+30+10)–(40+30+30)=20 единицам груза

	Потребитель 1 (80)	Потребитель 2 (30)
Поставщик 1 (40)		
Поставщик 2 (30)		
Поставщик 3 (30)		
Фикт. поставщик (20)		

2. Дополняем таблицу строкой и столбцом для промежуточного пункта

	Промежуточ- ный пункт	Потребитель 1 (80)	Потребитель 2 (30)
Поставщик 1 (40)			
Поставщик 2 (30)			
Поставщик 3 (30)			
Фикт. поставщик (20)			
Промежуточ- ный пункт			

3. Определяем возможность промежуточного пункта как суммарную (реальную) поставку

4. Определяем потребность промежуточного пункта как суммарную (реальную) поставку + собственная потребность в грузе

	Промежуточ-	Потребитель 1	Потребитель 2
	ный пункт	(80)	(30)
	(110)		
Поставщик 1			
(40)			
Поставщик 2			
(30)			
Поставщик 3			
(30)			
Фикт.			
поставщик			
(20)			
Промежуточ-			
ный пункт			
(100)			

Имеется п машин (рабочих), которые могут выполнить любую из п работ. Затраты, связанные с назначением і-й машины (рабочего) на выполнение ј-й работы, отличаются в зависимости от вида выполняемой работы. В задаче необходимо так распределить машины (рабочих) по работам, чтобы выполнить их с минимальными затратами. При этом должны выполняться два условия: каждая машина (рабочий) может выполнить только одну работу, а каждая работа должна быть закреплена за одной машиной (рабочим).

• Обозначения

- c_{ij} затраты на выполнение i-й машиной (рабочим) j-й работы,
- x_{ij} переменная, определяющая назначение $(x_{ij} = 1)$ или неназначение $(x_{ij} = 0)$ i-й машины (рабочего) на выполнение j-й работы

<u>Целевая функция:</u> минимизация общих затрат, связанных с выполнением работ

$$\min Z = \sum_{i=1}^m \sum_{j=1}^n C_{ij} x_{ij}$$

Ограничения:

1) Каждая машина (рабочий) должна быть назначена на выполнение одной работы

$$\sum_{j=1}^{n} x_{ij} = 1, \ i = \overline{1, n}$$

2) Каждая работа должна быть закреплена за одной машиной (рабочим)

$$\sum_{i=1}^{n} x_{ij} = 1, \ j = \overline{1,n}$$

3) Условие изменения переменной

$$x_{ij} = 0 \lor 1, \ i,j = \overline{1,n}$$

Задача о назначениях (пример)

В цехе установлены четыре станка, которые должны быть закреплены за четырьмя работами. Время на подготовительные операции, необходимое для выполнения различных работ на данных станках, приведено в таблице.

	Работа 1	<i>Работа</i> 2	Работа 3	<i>Работа</i> 4
Станок 1	14	5	8	7
Станок 2	2	12	6	5
Станок 3	7	8	3	9
Станок 4	2	4	6	10

Задача о назначениях (пример)

Руководство цеха хотело бы определить такое назначение станков на выполнение работ, при котором суммарное подготовительное время было бы минимальным.

Задача о назначениях (решение)

Переменные:

 x_{ij} =1 – *i*-й станок назначается на выполнение *j*-й работы;

 $x_{ij} = 0 - i$ -й станок не назначается на выполнение j-й работы.

<u>Целевая функция:</u> минимум затрат времени на выполнение работ

$$\min Z = 14x_{11} + 5x_{12} + 8x_{13} + 7x_{14} + 2x_{21} + 12x_{22} + 6x_{23} + 5x_{24} + 7x_{31} + 8x_{32} + 3x_{33} + 9x_{34} + 2x_{41} + 4x_{42} + 6x_{43} + 10x_{44}$$

$$x_{11} + x_{12} + x_{13} + x_{14} = 1$$
 $x_{21} + x_{22} + x_{23} + x_{24} = 1$
 $x_{31} + x_{32} + x_{33} + x_{34} = 1$
 $x_{41} + x_{42} + x_{43} + x_{44} = 1$

Ограничения по машинам

$$x_{11} + x_{21} + x_{31} + x_{41} = 1$$
 $x_{12} + x_{22} + x_{32} + x_{42} = 1$
 $x_{13} + x_{23} + x_{33} + x_{43} = 1$
 $x_{14} + x_{24} + x_{34} + x_{44} = 1$

Ограничения по работам

$$x_{11} = 0V1, x_{12} = 0V1,$$

 $x_{13} = 0V1, ..., x_{44} = 0V1$

Условия изменения переменных.

Венгерский метод

• <u>Шаг 1.</u> В каждой строке матрицы затрат находим минимальный элемент и вычитаем его из каждого элемента соответствующей строки. Для полученной матрицы, в каждом столбце выбираем минимальный элемент и вычитаем его из каждого элемента соответствующего столбца.

Венгерский метод

• Шаг 2. Используя минимальное число прямых линий (горизонтальных или вертикальных), зачеркиваем все нулевые элементы матрицы. Если число линий совпадает с п, то в полученной матрице можно найти оптимальное решение. Если число линий меньше, чем п, то необходимо перейти к шагу 3.

Венгерский метод

• <u>Шаг 3.</u> Находим наименьший элемент среди незачеркнутых и вычитаем его изо всех незачеркнутых элементов матрицы, и прибавляем к тем, которые перечеркнуты двумя линиями. Возвращаемся к шагу 2.

Исходная матрица затрат имеет вид:

14	5	8	7
2	12	6	5
7	8	3	9
2	4	6	10

Шаг 1. Находим минимальные элементы в строках матрицы:

1 строка -5;

2 строка − 2;

3 строка -3;

4 строка -2.

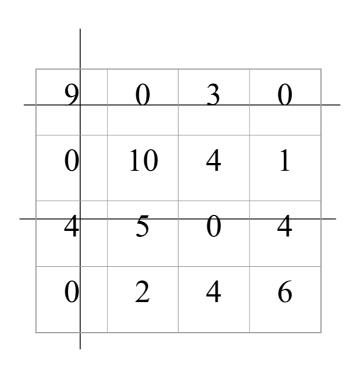
Вычитаем их из соответствующих строк. В результате получаем матрицу:

9	0	3	2
0	10	4	3
4	5	0	6
0	2	4	8

В полученной матрице находим минимальные элементы в столбцах:

1 столбец -0;

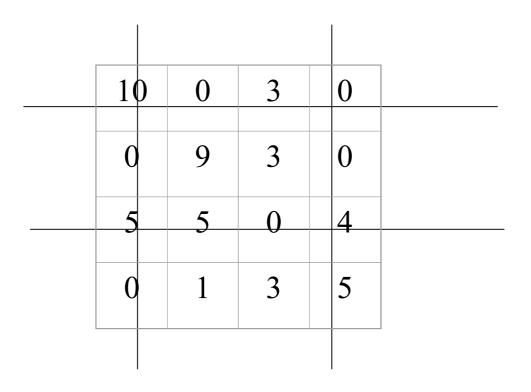
2 столбец – 0;


3 столбец -0;

4 столбец – 2.

Вычитаем их из соответствующих столбцов. Получаем матрицу:

9	0	3	0
0	10	4	1
4	5	0	4
0	2	4	6


Шаг 2. Зачеркиваем нулевые элементы минимальным числом линий:

Шаг 3. Вычитаем изо всех незачеркнутых элементов и прибавляем к зачеркнутым дважды минимальный элемент — 1. Получаем матрицу:

10	0	3	0
0	9	3	0
5	5	0	4
0	1	3	5

Переходим к шагу 2. Производим зачеркивания:

Оптимальное закрепление выглядит следующим образом (соответствующие клетки выделены):

14	5	8	7
2	12	6	5
7	8	3	9
2	4	6	10