ПЕРТ-анализ

Обозначения

 a_{ij} — оптимистическая оценка продолжительности работы (ij)

(рассчитывается для случая, когда условия проведения работы наиболее благоприятные)

 m_{ij} — наиболее вероятная продолжительность работы (ij)

(учитывает нормальный ход событий)

 b_{ij} — пессимистическая оценка длительности работы (ij)

(определяется для случая, когда процесс развивается по наиболее неудачной схеме)

Предположение системы ПЕРТ

Продолжительность любой операции – случайная величина, имеющая β - распределение

Ожидаемая продолжительность работы (іј)

$$\bar{t}_{ij} = \frac{a_{ij} + 4m_{ij} + b_{ij}}{6}$$

Вариация времени выполнения операции

$$V(t_{ij}) = \frac{(b_{ij} - a_{ij})^2}{36}$$

Стандартное отклонение

$$\sigma(t_{ij}) = \frac{b_{ij} - a_{ij}}{6}$$

Общая схема расчетов

• Для заданной сети определяем работы, принадлежащие критическому пути.

• Определяем ожидаемую продолжительность (\bar{t}_{ij}) , вариацию времени выполнения работ $V(t_{ij})$ и стандартное отклонение $\sigma(t_{ii})$

• Рассчитываем ожидаемое время окончания выполнения комплекса работ

$$\bar{t}_{\kappa p.} = \sum_{(i,j)\in\mu_{\kappa p.}} \bar{t}_{ij}$$

• Находим вариацию времени критического пути

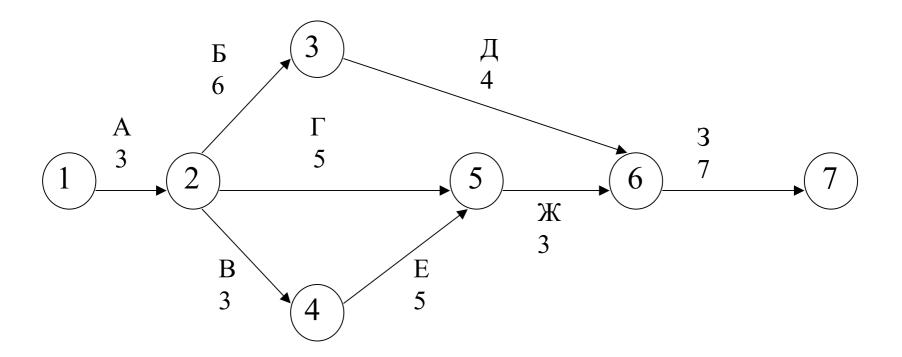
$$V(\bar{t}_{\kappa p.}) = \sum_{(i,j) \in \mu_{\kappa p.}} V(t_{ij})$$

и стандартное отклонение

$$\sigma(\bar{t}_{\kappa p.}) = \sqrt{V(\bar{t}_{\kappa p.})}$$

Предположения:

- 1. Время критического пути является независимой случайной величиной, распределенной по нормальному закону,
- 2. Продолжительности работ критического пути независимы друг от друга,
- 3. Число работ достаточно велико.


Пример

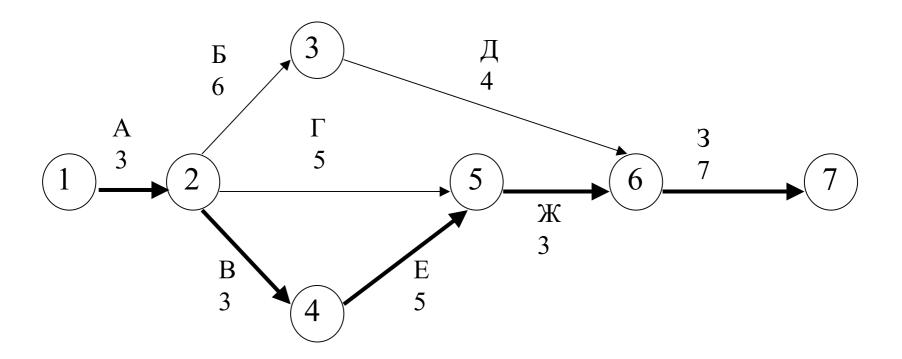
Пусть имеется комплекс работ, которые необходимо выполнить в рамках маркетингового исследования по запуску в производство нового продукта:

Код операции	Содержание	Операция — непосредствен- ный предшественник	Ожидаемое время выполнения (недель)
A	Исходный анализ рынка и стоимостных данных		3
Б	Разработка плана тестирования рынка и процедуры сбора информации	A	6
B	Подготовка производственной линии к запуску продукта в производство	A	3

Γ	Разработка и подготовка пакета документации	A	5
Д	Начало организации сбора данных по тестированию рынка	Б	4
E	Запуск пробной партии продукции в производство	В	5
Ж	Распределение продукции на рынке с целью его тестирования	Γ, Ε	3
3	Тестирование рынка – сбор и анализ данных	Д, Ж	7

Необходимо определить ожидаемое время окончания работ и стандартное отклонение от данного времени

Ранние сроки свершения событий


$$t_1 = 0;$$

 $t_2 = 0 + 3 = 3;$
 $t_3 = 3 + 6 = 9;$
 $t_4 = 3 + 3 = 6;$
 $t_5 = \max\{3 + 5; 6 + 5\} = 11;$
 $t_6 = \max\{9 + 4; 11 + 3\} = 14;$
 $t_7 = 14 + 7 = 21.$

Критический путь:

$$\mu_{\kappa p.} = 1 - 2 - 4 - 5 - 6 - 7$$

ИЛИ

$$\mu_{\kappa p.} = A - B - E - \mathcal{K} - 3$$

Оптимистические, наиболее вероятные и пессимистические сроки выполнения работ:

Код операции	Операция – непосредственный предшественник	a_{ij}	m_{ij}	b_{ij}
A (1,2)		1	3	5
Б (2,3)	A	4	6	8
B (2,4)	A	2	3	5
Γ (2,5)	A	4	5	8
Д (3,6)	Б	3	4	5
E (4,5)	В	2	5	7
Ж (5,6)	Γ, Ε	1.5	3	4.5
3 (6,7)	Д, Ж	5	7	9

Ожидаемое время выполнения операций

$$\bar{t}_{12} = \frac{1+12+5}{6} = 3; \qquad \bar{t}_{23} = \frac{4+24+8}{6} = 6;$$

$$\bar{t}_{24} = \frac{2+12+5}{6} = 3.167; \quad \bar{t}_{25} = \frac{4+20+8}{6} = 5.333;$$

$$\bar{t}_{36} = \frac{3+16+5}{6} = 4; \quad \bar{t}_{45} = \frac{2+20+7}{6} = 4.833;$$

$$\bar{t}_{56} = \frac{1.5 + 12 + 4.5}{6} = 3; \qquad \bar{t}_{67} = \frac{5 + 28 + 9}{6} = 7;$$

Вариация времени выполнения операций

$$V(t_{12}) = \frac{(5-1)^2}{36} = 0.444; \ V(t_{22}) = \frac{(8-4)^2}{36} = 0.444;$$

$$V(t_{24}) = \frac{(5-2)^2}{36} = 0.25; \ V(t_{25}) = \frac{(8-4)^2}{36} = 0.444;$$

$$V(t_{36}) = \frac{(5-3)^2}{36} = 0.222; \ V(t_{45}) = \frac{(7-2)^2}{36} = 0.694;$$

$$V(t_{56}) = \frac{(4.5 - 1.5)^2}{36} = 0.25; \ V(t_{67}) = \frac{(9 - 5)^2}{36} = 0.444.$$

Ожидаемая длительность критического пути

$$\bar{t}_{\kappa p} = 3 + 3.167 + 4.833 + 3 + 7 = 21;$$

$$V(\bar{t}_{\kappa\rho}) = 0.444 + 0.25 + 0.694 + 0.25 + 0.444 = 2.082.$$

Стандартное отклонение от средней величины

$$\sigma(\bar{t}_{\kappa p.}) = \sqrt{2.082} = 1.44$$

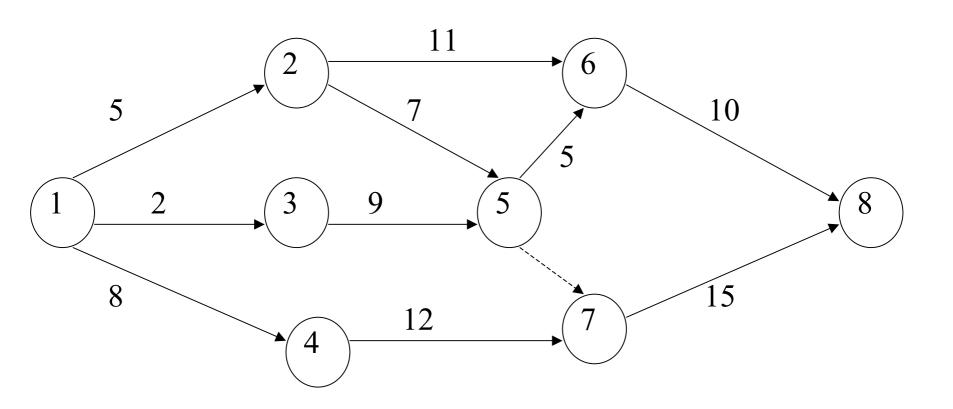
Вывод – продолжительность критического пути

$$t_{_{\mathrm{KP.}}} = 21 \pm 1.44$$
 дня

ЗАДАЧИ СЕТЕВОГО МОДЕЛИРОВАНИЯ И ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ

Пусть

• x_j — поздний срок свершения j—го события.


Для каждой дуги (*i,j*) рассматривается следующее соотношение

$$x_{j} \ge x_{i} + t_{ij}$$

Продолжительность критического пути

$$t_{\kappa p} = x_n - x_1$$

Пример

 $\min Z = x_8 - x_1;$

 $x_2 \ge x_1 + 5$ ограничени е, соответств ующее дуге (1,2); $x_3 \ge x_1 + 2$ ограничени е, соответств ующее дуге (1,3); $x_4 \ge x_1 + 8$ ограничени е, соответств ующее дуге (1,4); $x_5 \ge x_2 + 7$ ограничени е, соответств ующее дуге (2,5); $x_5 \ge x_3 + 9$ ограничени е, соответств ующее дуге (3,5);

 x_6 ≥ x_2 +11 ограничени е, соответств ующее дуге (2,6);

 $x_6 \ge x_5 + 5$ ограничени е, соответств ующее дуге (5,6);

 x_7 ≥ x_5 ограничени е, соответств ующее дуге (5,7);

 $x_7 \ge x_4 + 12$ ограничени е, соответств ующее дуге (4,7);

 $x_8 \ge x_6 + 10$ ограничени е, соответств ующее дуге (6,8);

 $x_8 \ge x_7 + 15$ ограничени е, соответств ующее дуге (7,8);

$$x_1 \ge 0$$
; $x_2 \ge 0$; $x_3 \ge 0$; $x_4 \ge 0$;

$$x_5 \ge 0$$
; $x_6 \ge 0$; $x_7 \ge 0$; $x_8 \ge 0$.

1	≥ 5	0	+8.0	-∞	+13.0
2	≥ 2	0	+9.0	∞	+11.0
3	≥ 8	-1.0	0	0	+∞
4	≥ 7	0	0	+6.0	+15.0
5	≥ 9	0	0	∞	+18.0
6	≥ 11	0	+1.0	∞	+12.0
7	≥ 5	0	0	∞	+5.0
8	≥ 0	0	0	0	+8.0
9	≥ 12	-1.0	0	+4.0	+∞
10	≥ 10	0	0	-∞	+10.0
11	≥ 15	-1.0	0	+15.0	+∞
Минимальное значение целевой функции = 35					

Ограниче-

ние

Правая часть

ограничения

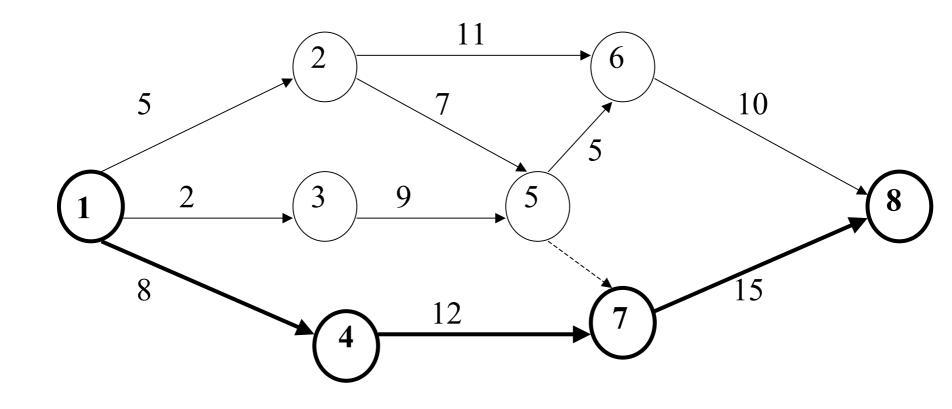
Теневая

цена

Недовыполнение/

перевыполнение

Миним.


значение

правой части

Максим.

значение

правой части

$$\mu_{\kappa p.} = 1 - 4 - 7 - 8$$