Потоки в сетях

ПОСТАНОВКА ЗАДАЧИ О МАКСИМАЛЬНОМ ПОТОКЕ

Имеется сеть, которая задана множеством вершин E и множеством дуг или ребер e , содержащих некоторые пары вершин G = (E,e) .

Пусть вершины графа обозначены

$$E_0, E_1, E_2, ..., E_n$$

Каждая из них характеризуется

интенсивностью $d(E_{\scriptscriptstyle i})$, причем, если

$$d(E_i) > 0$$
 , то вершина является

источником, если $d(E_i) < 0$ –

стоком, если
$$d(E_i) = 0$$
 ,

то промежуточной.

Пропускная способность каждой дуги $\left(E_{_{i}},E_{_{i}}
ight)$ равна $b_{_{ij}}$. Величина $b_{_{ii}}$ представляет собой максимальное Количество вещества, которое может пропустить сеть по дуге (i,j) в единицу времени.

Будем считать, что сеть имеет один источник и один сток. Остальные

вершины – промежуточные, то есть

$$d(E_0) > 0 \qquad d(E_n) < 0$$

$$d(E_1) = d(E_2) = \dots = d(E_{n-1}) = 0$$

Необходимо для данной сети определить, какой максимальный поток может быть направлен из вершины $E_{\scriptscriptstyle 0}$ в вершину $E_{\scriptscriptstyle n}$

Пусть X_{ij} — величина потока, перемещаемого по дуге (i,j) ,

$$i, j = \overline{0, n}, i \neq j$$

 ${\cal V}$ – величина потока, перемещаемого по всем возможным путям

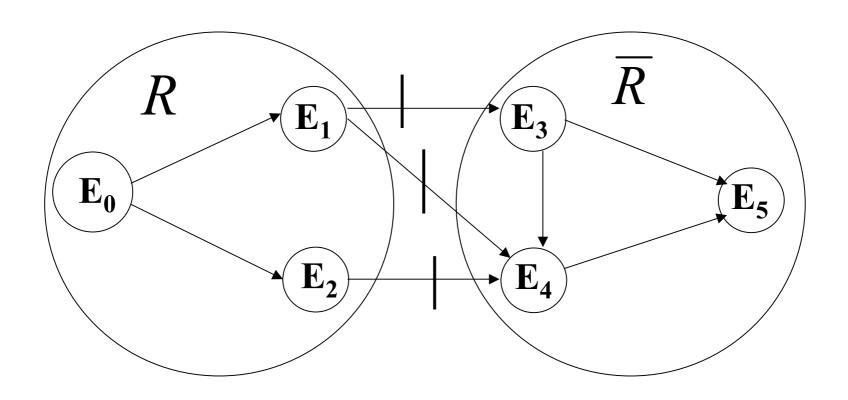
Математическая модель

$$F = \max v$$

$$v = \sum_{j=1}^{n} x_{0j} = \sum_{i=0}^{n-1} x_{in},$$

$$0 \le x_{ij} \le b_{ij}$$
, $i, j = 0, n, i \ne j$,

$$\sum_{i=0}^{n-1} x_{ik} - \sum_{j=1}^{n} x_{kj} = 0, \quad k = \overline{1, n-1}.$$


Понятие разреза

Все множество вершин сети E разобьем на два подмножества, R и \overline{R} , которые не пересекаются между собой: $R \cup \overline{R} = E$ Причем $E_0 \in R$, а $E_n \in \overline{R}$.

Выделим все дуги, начальные вершины которых принадлежат подмножеству R, а конечные – подмножеству \overline{R} .

Определение

• **Разрез** – это некоторое подмножество дуг (ребер, дуг и ребер) сети, начальные вершины которых относятся к подмножеству вершин R , содержащих источник E_0 , а конечные вершины – к подмножеству вершин \overline{R} , содержащих сток E_n .

Пропускная способность разреза

$$b(R,\overline{R}) = \sum_{\substack{E_i \in R \\ E_j \in \overline{R}}} b_{ij}$$

Теорема Форда-Фалкерсона

В любой сети максимальная величина потока из источника E_0 в сток E_n равна минимальной пропускной способности разреза, отделяющего источник от стока .

АЛГОРИТМ ФОРДА

Предварительный шаг

 Строим квадратную таблицу с количеством строк и столбцов, равным числу вершин. На пересечении строк и столбцов заносим пропускные способности дуг.

Если пропускная способность дуги (E_i, E_j) больше нуля, а симметричной ей – равна нулю, то в клетку (i,j) заносим $b_{_{ii}}$, а в клетку (j,i) – нуль; если $b_{ii} = b_{ii} = 0$, то соответствующие клетки не заполняются.

Общий шаг

• 1-й этап. Определяем путь из источника в сток, у которого пропускная способность больше нуля. Столбец, соответствующий вершине $E_{\scriptscriptstyle 0}$, помечаем * (звездочкой).

Двигаясь по строке $E_{_0}$, находим $b_{_{0\,j}}>0$ и помечаем соответствующие им столбцы цифрой 0 (по номеру строки). Таким образом, определяются первые дуги пути из $E_{_0}$ в $E_{_n}$.

Просматриваем строки с номерами, совпадающими с номерами помеченных столбцов. Отыскиваем $b_{ii}>0$, находящиеся в непомеченных столбцах, и присваиваем им номера просматриваемых строк. И т.д.

	*	0		f	r	k
	E ₀	E ₁	•••	E _r	E _k	E _n
E ₀		b ₀₁	•••			
E ₁	b ₁₀ ⁺			A		
•	:	•		•	•	•
E _r			•••		b _{rk} -	
E _k			•••	b _{kr} +		b _{kn} -
E _n			• • •		b _{nk} +	

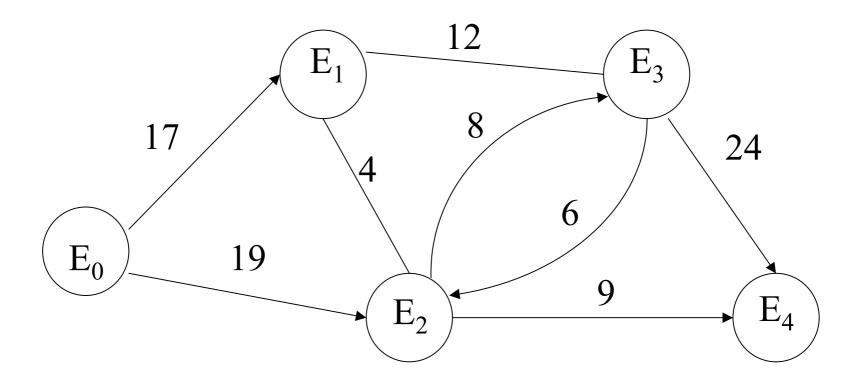
• 2-й этап. Определяем пропускную способность θ найденного пути из выражения

$$\theta = \min_{(i,j)\in\mu} \{b_{ij}^{-}\}$$

• 3-й этап. Определяем остаточные пропускные способности дуг найденного пути и симметричных к ним. Для этого выполняем действия

$$b'_{ij} = b_{ij}^{-} - \theta; \quad b'_{ji} = b_{ji}^{+} + \theta.$$

Заключительный шаг


Находим разности между соответствующими элементами исходной таблицы и полученной на последнем шаге. Получаем таблицу, в которой положительные элементы равны искомым \mathcal{X}_{ij} — величинам потоков, движущимся по дугам (E_i, E_j) .

Максимальный поток

$$v = \sum_{j=1}^{n} x_{0j} = \sum_{i=0}^{n-1} x_{in}$$

Пример

Для приведенной сети найти величину максимального потока из $E_{\scriptscriptstyle 0}$ в $E_{\scriptscriptstyle n}$. Пропускные способности дуг и ребер заданы.

Решение

Предварительный шаг

Матрица пропускных способностей дуг сети

E ₀	E ₁	E_2	E_3	E ₄
	17	19		
0		4	12	
0	4		8	9
	12	6		24
		0	0	
	E ₀	17 0 0 4	17 19 0 4 0 4	17 19 0 4 12 0 4 8

Первый шаг

Этап 1

Определяем путь из $\,E_{_0}\,$ в $\,E_{_n}\,$ с пропускной способностью больше нуля

	Пометки					
	*	0	0	1	2	
Вершины	E_0	E ₁	E_2	E_3	E ₄	
E ₀		17	19			
E ₁	0		4	12		
E ₂	0	4		8	9	
E_3		12	6		24	
E ₄			0	0		

Вершины	E ₀	E ₁	E ₂	E ₃	E ₄
E ₀		17	19−		
E ₁	0		4	12	
E_2	0+	4		8	9-
E_3		12	6		24
E ₄			0+	0	

$$\mu_1 = (E_0 - E_2 - E_4)$$

Этап 2

Определяем пропускную способность найденного пути

$$\theta_1 = \min\{b_{02}^-, b_{24}^-\} = \min\{19, 9\} = 9$$

Этап 3Корректируем пропускные способности

Вершины	E ₀	E ₁	E ₂	E ₃	E ₄
E ₀		17	10		
E ₁	0		4	12	
E ₂	9	4		8	0
E ₃		12	6		24
E ₄			9	0	

Второй шаг

Этап 1

Находим второй путь

	*	0	0	1	3
Вершины	E ₀	E ₁	E ₂	E ₃	E ₄
E ₀		17-	10		
E ₁	0+		4	12-	
E ₂	9	4		8	0
E ₃		12+	6		24-
E ₄			9	0+	

$$\mu_2 = (E_0 - E_1 - E_3 - E_4)$$

Этап 2

Находим пропускную способность второго пути

$$\theta_2 = \min\{b_{01}^-, b_{13}^-, b_{34}^-\} = \min\{17, 12, 24\} = 12$$

Этап 3

Изменяем пропускные способности дуг

Вершины	E ₀	E ₁	E ₂	E ₃	E ₄
E ₀		5	10		
E ₁	12		4	0	
E ₂	9	4		8	0
E_3		24	6		12
E ₄			9	12	

Третий шаг

Этап 1

	*	0	0	2	3
Вершины	E _o	E ₁	E ₂	E ₃	E ₄
E _o		5	10-		
E ₁	12		4	0	
E_2	9+	4		8-4	0
E_3		24	6+		12-
E_4			9	12+	

Этап 2

$$\theta_3 = \min\{b_{02}^-, b_{23}^-, b_{34}^-\} = \min\{10, 8, 12\} = 8$$

Этап 3

Вершины	E _o	E ₁	E ₂	E ₃	E ₄
E ₀		5	2		
E ₁	12		4	0	
E_2	17	4		0	0
E ₃		24	14		4
E ₄			9	20	

Четвертый шаг

Этап 1

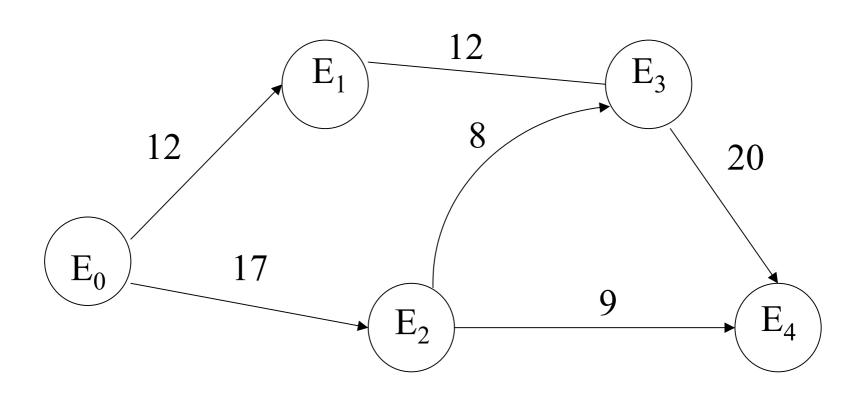
Вершины*00 E_2 E_3 E_4 E_0 52 E_3 E_4 E_1 1240 E_2 17400 E_3 24144						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		*	0	0		
	Вершины	E ₀	E ₁	E ₂	E ₃	E ₄
E ₂ 17 4 0 0	E ₀		5	2		
	E ₁	12		4	0	
E ₃ 24 14 4	E ₂	17	4		0	0
	E ₃		24	14		4
E ₄ 9 20	E ₄			9	20	

Заключительный шаг

Вершины	E ₀	E ₁	E ₂	E ₃	E ₄
E ₀		12	17		
E ₁	-12		0	12	
E_2	-17	0		8	9
E_3		-12	-8		20
E_4			-9	-20	

Величины дуговых потоков

$$x_{01} = 12, x_{02} = 17, x_{13} = 12, x_{23} = 8, x_{24} = 9, x_{34} = 20$$


Величина максимального потока

$$v = 12 + 17 = 9 + 20 = 29$$

$$v = \theta_1 + \theta_2 + \theta_3 = 9 + 12 + 8 = 29$$

$$b(R, \overline{R}) = b_{13} + b_{23} + b_{24} = 12 + 8 + 9 = 29$$

Сеть, соответствующая полученному результату

