TEMA 6

ЦЕЛОЧИСЛЕННОЕ ПРОГРАММИРОВАНИЕ

Полностью целочисленная задача линейного программирования

$$\max Z = 3x_1 + 2x_2,$$
 $2x_1 + 2x_2 \le 12,$ $x_1, x_2 \ge 0,$ $x_1, x_2 -$ целые.

Частично-целочисленная задача

$$\max Z = 3x_1 + 2x_2,$$
 $2x_1 + 2x_2 \le 12,$ $x_1, x_2 \ge 0,$ $x_1 -$ целая.

Задача с булевыми переменными

$$\max Z = x_1 - x_2,$$
 $5x_1 + 10x_2 \le 10,$ $4x_1 - 2x_2 \le 2,$ $x_1, x_2 = 0$ или 1.

Определение

• Задача ЛП, полученная путем отмены условия целочисленности или ограничения типа «0 или 1», называется <u>линейно-ослабленной</u> задачей целочисленного программирования

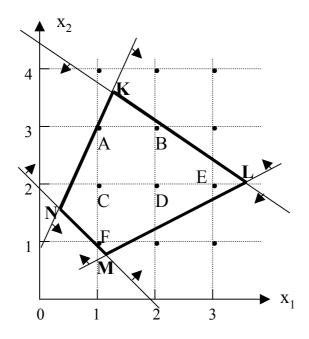
Соотношения между ЦФ задач ЛП и ЦП

Задача на максимум ЦФ

$$Z_{_{\jmath n}}^{onm.} \geq Z_{_{_{\!i\!j}n.}}^{onm.}$$

Задача на минимум ЦФ

$$Z_{_{\jmath n}}^{onm.} \leq Z_{_{{\it u}n.}}^{onm.}$$



Определение

• Область допустимых значений задачи целочисленного программирования – это множество целочисленных точек, удовлетворяющих ограничениям задачи и ограничениям на знак

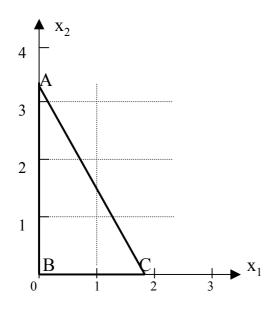
Подходы к решению задач целочисленного программирования

• Путем перебора всех целочисленных точек ОДЗ и расчета для каждой из них значения целевой функции с последующим выбором наилучшего.

- Путем округления полученных нецелочисленных решений до целых (в случае, когда искомая единица составляет незначительную часть от общего значения переменной).
- Путем построения дополнительных ограничений в рамках имеющейся ОДЗ с целью отсечения нецелочисленных значений переменных.

Иллюстрация ошибочности приема округления

$$\max Z = 42x_1 + 22x_2,$$
 $21x_1 + 12x_2 \le 39,$ $x_1, x_2 \ge 0,$ $x_1, x_2 -$ целые.



ОДЗ:
$$S = \{(0,0), (0,1), (0,2), (0,3), (1,0), (1,1)\}$$

Оптимальное решение задачи ЛП

$$Z = 78, x_1 = 1\frac{6}{7}, x_2 = 0$$

Округление

$$Z = 42, x_1 = 1, x_2 = 0$$

Оптимальное целочисленное решение

$$x_1 = 0$$
, $x_2 = 3$, $Z = 66$

• ФОРМУЛИРОВКИ НЕКОТОРЫХ ЗАДАЧ ЦП

1. ПРОБЛЕМА КАПИТАЛОВЛОЖЕНИЙ

• Компания рассматривает возможность инвестирования средств по четырем направлениям: инвестиции №1 принесут чистый доход в размере 16000 грн., инвестиции №2 – 22000 грн., инвестиции №3 – 12000 грн. и инвестиции №4 – 8000 грн.

• Каждый из четырех видов инвестиций требует определенного вложения средств в настоящее время: №1 – 5000 грн., №2 – 7000 грн., №3 – 4000 грн., №4 – 3000 грн.

• В распоряжении компании имеется 14000 грн. Сформулируйте модель целочисленного программирования, которая бы позволила максимизировать чистый доход, полученный от инвестиций.

Решение

• Переменные

$$x_{j} = \begin{cases} 1, & \text{если инвестиции j осуществлены} \\ 0, & \text{если инвестиции j не осуществлены} \end{cases}$$

$$(j=\overline{1,4})$$

• Модель

$$\max Z = 16x_1 + 22x_2 + 12x_3 + 8x_4,$$

$$5x_1 + 7x_2 + 4x_3 + 3x_4 \le 14,$$

$$x_j = 0 \text{ или } 1, \ j = \overline{1,4}.$$

• Оптимальное решение

$$x_1 = 0, x_2 = x_3 = x_4 = 1, Z = 42$$

• При частичном вложении средств

$$x_1 = x_2 = 1, x_3 = 0.5, x_4 = 0, Z = 44$$

Задача о рюкзаке

• Из набора предметов, которые могут понадобиться в походе, необходимо подобрать такое их сочетание, которое бы принесло максимальную пользу. Ограничивающим условием является либо вес помещающихся в рюкзаке вещей, либо объем.

Модификации задачи об инвестициях

- Компания может инвестировать средства не более чем по двум направлениям;
- Если компания вложит средства в инвестиции №2, то она должна также инвестировать средства и в инвестиции №1;
- Если компания вкладывает средства в инвестиции №2, то она не может инвестировать средства в инвестиции №4.

1. Ограничения типа **«не более** *k* альтернатив из *n*»

$$x_1 + x_2 + x_3 + x_4 \le 2$$

2 и 3. Ограничения типа **«зависимых условий»**

• если $x_2 = 1$, то переменная x_1 тоже должна быть равна 1

$$x_2 \leq x_1$$

ИЛИ

$$|x_2 - x_1 \le 0|$$

• если $x_2 = 1$, то переменная x_4 должна

быть равна 0

$$x_2 + x_4 \le 1$$

2. ПРОБЛЕМЫ С ФИКСИРОВАННЫМИ РАСХОДАМИ

• Компания «Сафари» может производить три типа одежды: рубашки, шорты и брюки. Для производства каждого вида одежды необходимо оборудование различных типов.

• Данное оборудование может быть арендовано по следующим ценам: для производства рубашек – 200 грн. в неделю, для производства шортов – 150 грн., для производства брюк – 100 грн. Затраты материи и рабочей силы на каждый из видов продукции приведены в таблице

Продукция	Труд (часы)	Материя (м²)
Рубашка	3	4
Шорты	2	3
Брюки	6	4

• В распоряжении компании еженедельно имеется 150 часов рабочего времени и 160 м² материи. Переменные затраты и цена продажи на единицу продукции каждого вида приведены в таблице

Продукция	Цена продажи, грн.	Переменные затраты, грн.
Рубашка	12	6
Шорты	8	4
Брюки	15	8

Сформулируйте модель
 целочисленного программирования
 для максимизации недельной
 прибыли компании «Сафари».

• Переменные

 $\chi_1^{}$ – количество рубашек, производимых еженедельно;

 χ_2 – количество шортов, производимых еженедельно;

 X_3 – количество пар брюк, производимых еженедельно.

$$y_{_{1}} = \begin{cases} 1, & \text{если выпускается одна или больше рубашек}, \\ 0, & \text{если не выпускается}, \end{cases}$$

$$y_{2} = \begin{cases} 1, & \text{если хотя бы одна единица шортов выпускается}, \\ 0, & \text{если не выпускается}, \end{cases}$$

$$y_3 = \begin{cases} 1, & \text{если выпускается одна пара брюк или больше}, \\ 0, & \text{если не выпускается}. \end{cases}$$

• Модель

$$\max Z = 12x_1 + 8x_2 + 15x_3 - 6x_1 - 4x_2 - 8x_3 - 200y_1 - 150y_2 - 100y_3 =$$

$$= 6x_1 + 4x_2 + 7x_3 - 200y_1 - 150y_2 - 100y_3.$$

$$3x_1 + 2x_2 + 6x_3 \le 150$$

$$4x_1 + 3x_2 + 4x_3 \le 160$$

$$x_1 \le M_1 y_1,$$

$$x_2 \le M_2 y_2,$$

$$x_3 \le M_3 y_3.$$

$$M_1 = \min\{150/3; 160/4\} = \min\{50; 40\} = 40$$

$$M_2 = \min\{150/2; 160/3\} = \min\{75; 53.3\} = 53$$

$$M_3 = \min\{150/6; 160/4\} = \min\{25; 40\} = 25$$

$$\max Z = 6x_1 + 4x_2 + 7x_3 - 200y_1 - 150y_2 - 100y_3,$$

$$3x_1 + 2x_2 + 6x_3 \le 150,$$

$$4x_1 + 3x_2 + 4x_3 \le 160,$$

$$x_1 \le 40y_1,$$

$$x_2 \le 53y_2,$$

$$x_3 \le 25y_3,$$

$$x_1, x_2, x_3 \ge 0,$$
 $x_1, x_2, x_3 -$ целые,
 $y_1, y_2, y_3 - 0$ или $1.$

Ограничение на фиксированные затраты

$$f_j(x_j) = \begin{cases} c_j x_j + k_j, & \text{если } x_j > 0 \\ 0, & \text{если } x_j = 0, \end{cases}$$

3. ПРОБЛЕМЫ ПЕРЕКРЫТИЯ НАБОРА ЭЛЕМЕНТОВ

• В некотором районе имеется 6 городов. Необходимо определить, где построить пожарные станции. В районе должно быть построено минимальное количество этих станций.

• При этом необходимо учитывать условие, чтобы, по крайней мере, одна пожарная станция находилась в 15 минутах езды от каждого из городов. Время езды между городами района приведено в таблице

Из	В город					
горо -да						
	1	2	3	4	5	6
1	0	10	20	30	30	20
2	10	0	25	35	20	10
3	20	25	0	15	30	20
4	30	35	15	0	15	25
5	30	20	30	15	0	14
6	20	10	20	25	14	0

• Требуется сформулировать модель целочисленного программирования для определения числа пожарных станций, которые следует построить в районе, и мест расположения этих станций.

Решение

• Переменные

 X_i определяют строительство

$$(x_i = 1)$$

или нестроительство

$$(x_i = 0)$$

пожарной станции в і-м городе

Город отправления	Город назначения		
1	1,2		
2	1,2,6		
3	3,4		
4	3,4,5		
5	4,5,6,		
6	2,5,6		

$$\min Z = x_1 + x_2 + x_3 + x_4 + x_5 + x_6$$

$$x_1 + x_2 \ge 1$$
 хотя бы одна станция находится в 15 минутах езды от городов 1 и 2

$$x_1 + x_2 + x_6 \ge 1$$
 $x_3 + x_4 \ge 1$ $x_3 + x_4 \ge 1$ $x_4 + x_5 \ge 1$ $x_4 + x_5 + x_6 \ge 1$ $x_2 + x_5 + x_6 \ge 1$ $x_i = 0 \lor 1, i = \overline{1,6}$

• Оптимальное решение

$$Z = 2$$
, $x_2 = x_4 = 1$, $x_1 = x_3 = x_5 = x_6 = 0$