Тема 7

ПРИНЯТИЕ РЕШЕНИЙ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ

Фрагмент проблемной карты

Решение	Дождь
Взять зонтик	0
Не брать	-20

Направления вкладывания средств	Отдача через два года, грн.
Акции	22000
Строительство дороги	21500
Строительство больницы	21750
Кредиты частным лицам	22500

Сочетание: машины – корабли	Прибыль, грн.
0 - 0	0
10 – 10	50
20 – 20	100
40 – 20	160
:	
20 – 60	180

Составляющие процесса принятия решений

- Присутствует лицо, ответственное за принятие решения.
- Имеется множество альтернатив, из которых человек, принимающий решение, должен выбрать одну.

Цель человека, принимающего решение
выбрать наилучшую из альтернатив.

- После того, как решение человеком принято, происходит событие, которое им не контролируется.
- Каждая комбинация альтернативы, выбранной человеком, и произошедшего события приводит к результату, который имеет определенную меру ценности.

$$A = \{a_1, a_2, \dots, a_m\} \qquad S = \{S_1, S_2, \dots, S_n\}$$

Решение		Состо	эние	
	S ₁	S ₂	•••	S _n
a ₁	r ₁₁	r ₁₂	•••	r _{1n}
a ₂	r ₂₁	r ₂₂	•••	r _{2n}
•	:	•	:	•
a _m	r _{m1}	r _{m2}	•••	r _{mn}

$$O = \sum_{j=1}^{n} r_j p_j(S_j)$$

$$O_i = \sum_{j=1}^{n} r_{ij} p_j(S_j), \quad i = \overline{1,m}$$

$$O_{i^*} = \max_{i=1,m} O_i$$

Пример

 Распространитель газет хочет определить, сколько газет ему заказывать в почтовом отделении.
Он платит за газету почтовому отделению 20 копеек, а продает по 30 копеек. • Газеты, не проданные к концу дня, становятся бесполезными и потраченные на них деньги считаются потерями распространителя. Он знает, что каждый день сможет продать от 5 до 9 газет. Опыт ему подсказывает, что распределение вероятностей потребности в газетах следующее:

$$p_5 = 0.1$$
 $p_6 = 0.3$ $p_7 = 0.3$ $p_8 = 0.2$ $p_9 = 0.1$

Распространитель должен решить, сколько газет ему заказывать в почтовом отделении, чтобы получить наибольший ожидаемый доход.

$$r_{ij} = 30j - 20i, \qquad j < i,$$

$$r_{ij} = 30i - 20i = 10i, \quad j \ge i.$$

Заказ		П	отребност	ГЬ	
	5	6	7	8	9
5	50	50	50	50	50
6	30	60	60	60	60
7	10	40	70	70	70
8	-10	20	50	80	80
9	-30	0	30	60	90

• Критерии принятия решений

Определение

• Действие a_i подавляется действием a_i^1 (иначе, действие a_i^1 доминирует над действием a_{i}), если для всех состояний $S_{i} \in S$, $r_{ij} \leq r_{ij}$ (где r_{ij} и r_{ij} – доход) и для некоторых состояний $S_{i} \in S$, $r_{ii} < r_{ii}$.

1. Критерий Байеса

$$O_5 = 0.1 \times 50 + 0.3 \times 50 + 0.3 \times 50 + 0.2 \times 50 + 0.1 \times 50 = 50$$

$$O_6 = 0.1 \times 30 + 0.3 \times 60 + 0.3 \times 60 + 0.2 \times 60 + 0.1 \times 60 = 57$$

$$O_7 = 0.1 \times 10 + 0.3 \times 40 + 0.3 \times 70 + 0.2 \times 70 + 0.1 \times 70 = 55$$

$$O_8 = 0.1 \times (-10) + 0.3 \times 20 + 0.3 \times 50 + 0.2 \times 80 + 0.1 \times 80 = 44$$

$$O_9 = 0.1 \times (-30) + 0.3 \times 0 + 0.3 \times 30 + 0.2 \times 60 + 0.1 \times 90 = 27$$

2. Критерий максимин (критерий Вальда)

• Определяем для каждого действия наихудший исход (наименьший доход).

• Среди полученных результатов выбираем действие с наилучшим исходом.

Определение

 Критерий максимин выбирает действие с наибольшим значением среди минимальных в строке

$$\max_{i=1,m} \left\{ m_{j=1,n} \left\{ r_{ij} \right\} \right]$$

Заказано газет	Наихудшее из состояний	Доход при наихудшем состоянии, коп.
5	56789	50
6	5	30
7	5	10
8	5	-10
9	5	-30

3. Критерий максимакс

 Для каждого действия выбираем наилучший исход (наибольший доход).

• Среди полученных результатов выбираем действие с наилучшим исходом.

Определение

 Критерий максимакс выбирает действие с наибольшим значением среди максимальных

$$\max_{i=1,m} \left[\max_{j=1,n} \left\{ r_{ij} \right\} \right]$$

Заказано газет	Состояние, приносящее наилучший исход	Наивысший доход
5	56789	50
6	6789	60
7	789	70
8	8 9	80
9	9	90

4. Критерий Гурвица

• Для каждой строки вычисляется выражение

$$R_{i} = \alpha M_{i} + (1 - \alpha) m_{i},$$

 R_{i} — оценка і-го действия;

 M_{i} – максимальное значение в і-й строке;

 m_i — минимальное значение в і-й строке.

— «коэффициент оптимизма»

• Среди полученных R_i выбирается наибольшее:

$$\max_{i=\overline{1,m}} \{R_i\}$$

	Значение α				
Заказ	0.2	0.35	0.5	0.65	0.8
5	50	50	50	50	50
6	36	40.5	45	49.5	54
7	22	31	40	49	58
8	8	21.5	35	48.5	62
9	- 6	12	30	48	66

5. Критерий минимаксного сожаления (критерий Сэвиджа)

• Для каждого состояния S_j из множества состояний S находим действие, которое максимизирует доход.

• Затем для каждого состояния S_{j} рассчитываем возможные потери или «сожаления»

$$L_{ij} = r_{ij_{(max)}} - r_{ij}, \quad i = 1, m$$

 $\mathcal{V}_{ij_{(\max)}}$ – максимальное значение оценки j-го состояния

• Строим матрицу сожалений.

• Для каждого действия $a_i \in A$ выбираем наибольшее сожаление.

• Среди полученных сожалений выбираем наименьшее.

Заказ	Потребность				
	5	6	7	8	9
5	50 - 50 = 0	60 – 50 = 10	70 – 50 = 20	80 – 50 = 30	90 – 50 = 40
6	50 – 30 = 20	60 - 60 =	70 – 60 = 10	80 – 60 = 20	90 – 60 = 30
7	50 – 10 = 40	60 – 40 = 20	70 – 70 =	80 – 70 = 10	90 – 70 = 20
8	50 - (-10) = 60	60 – 20 = 40	70 – 50 = 20	80 - 80 =	90 – 80 = 10
9	50 - (-30) = 80	60 – 0 = 60	70 – 30 = 40	80 – 60 = 20	90 - 90 =
Макси- мальное значе- ние оценки	$r_{i5_{\text{(max)}}} = 50$	$r_{i6_{\text{(max)}}} = 60$	$r_{i7_{\text{(max)}}} = 70$	$r_{i8_{(\text{max})}} = 80$	$r_{i9_{\text{(max)}}} = 90$

Заказано газет	Максимальные потери
5	40
6	30
7	40
8	60
9	80

6. Критерий ожидаемой ценности (критерий Лапласа)

Заказано газет	Ожидаемый доход, копеек
5	1/5(50 + 50 + 50 + 50 + 50) = 50
6	1/5(30 + 60 + 60 + 60 + 60) = 54
7	1/5(10 + 40 + 70 + 70 + 70) = 52
8	1/5(-10 + 20 + 50 + 80 + 80) = 44
9	1/5(-30 + 0 + 30 + 60 + 90) = 30

ПРОБЛЕМА ВЫБОРА КРИТЕРИЯ

Критерий	Оптимальное решение
Принятие решений в условиях риска (критерий Байеса с распределением вероятностей: 0.1, 0.3, 0.3, 0.2, 0.1)	Заказ 6 газет
Вальда (максимина)	Заказ 5 газет
Максимакса	Заказ 9 газет
Гурвица	? (зависит от «уровня оптимизма» лица, принимающего решение)
Сэвиджа (минимаксного сожаления)	Заказ 6 газет
Лапласа (ожидаемой ценности)	Заказ 6 газет

ОЦЕНКА ОЖИДАЕМОЙ ЦЕННОСТИ ПОЛНОЙ НФОРМАЦИИ

Наибольшая плата за информацию о

том состоянии, которое наступит,

называется ожидаемой ценностью

полной информации – EVPI (Expected

Value of Perfect Information)

Оценка EVPI – разность между ожидаемой отдачей в случае, когда будет точно известно, какое состояние наступит, и ожидаемой отдачей при текущем состоянии дел.

$$O_{(opt.)} = 0.1 \times 50 + 0.3 \times 60 + 0.3 \times 70 + 0.2 \times 80 + 0.1 \times 90 = 69$$
 коп.

$$EVPI = O_{(opt.)} - O_6 = 69 - 57 = 12$$
 коп.

Оценка EVPI показывает верхнюю границу затрат на сбор информации о состоянии природы, которое произойдет.

Свойство оценки

• Она всегда равна минимальному ожидаемому сожалению, получаемому при принятии оптимального решения в условиях риска.

$$OC_5 = 0.1 \times 0 + 0.3 \times 10 + 0.3 \times 20 + 0.2 \times 30 + 0.1 \times 40 = 19$$

$$OC_6 = 0.1 \times 20 + 0.3 \times 0 + 0.3 \times 10 + 0.2 \times 20 + 0.1 \times 30 = 12$$

$$OC_7 = 0.1 \times 40 + 0.3 \times 20 + 0.3 \times 0 + 0.2 \times 10 + 0.1 \times 20 = 14$$

$$OC_8 = 0.1 \times 60 + 0.3 \times 40 + 0.3 \times 20 + 0.2 \times 0 + 0.1 \times 10 = 25$$

$$OC_9 = 0.1 \times 80 + 0.3 \times 60 + 0.3 \times 40 + 0.2 \times 20 + 0.1 \times 0 = 42$$

Заказ	Потребность				
	5	6	7	8	9
5	0	10	20	30	40
6	20	0	10	20	30
7	40	20	0	10	20
8	60	40	20	0	10
9	80	60	40	20	0