ОПРЕДЕЛЕНИЕ ВАЖНОСТИ ПЕРЕМЕННЫХ ПРИ УСЛОВИИ НАЛИЧИЯ КОНФЛИКТНЫХ ЦЕЛЕЙ

Имеется 5 пищевых продуктов из зерновых культур, которые характеризуются по 5 признакам:

- цене,
- содержанию полезных веществ,
- содержанию сахара,
- содержанию клетчатки и
- качеству.

Предположим, что потребитель проранжировал эти продукты, используя шкалу от 1 до 10 (оценка 10 – наивысшая).

Данные опроса

Продукт	Цена	Содержа- ние полезных веществ	Содер- жание сахара	Содер- жание клет- чатки	<i>Качеств</i> о
1	4	6	3	4	7
2	2	2	10	1	10
3	4	10	5	5	4
4	4	7	1	10	3
5	1	7	6	5	8

Потребитель хотел бы знать весовые оценки приведенных признаков с целью определения общей оценки каждого из продуктов.

Общая оценка продукта определяется суммой произведений весовых оценок признаков на соответствующие оценки каждого фактора.

Потребитель определил предпочтения относительно предложенных продуктов следующим образом:

- Продукт 2 предпочтительнее продукта 1;
- Продукт 3 предпочтительнее продукта 2;
- Продукт 3 предпочтительнее продукта 4;
- Продукт 5 предпочтительнее продукта 1;
- Продукт 5 предпочтительнее продукта 2.

Необходимо определить такой набор весов, который будет наилучшим образом отражать высказанные предпочтения

Переменные:

- С весовая оценка цены продукта;
- N весовая оценка содержания полезных веществ;
- S весовая оценка содержания сахара;
- F весовая оценка содержания клетчатки;
- Р весовая оценка качества продукта.

Если потребитель предпочитает второй продукт первому, то

$$4C + 6N + 3S + 4F + 7P \le 2C + 2N + 10S + F + 10P$$
 или

$$2C + 4N - 7S + 3F - 3P \le 0$$

Для заданных набора весов и решения K определяем штраф $Z_{\scriptscriptstyle K}$:

$$Z_{K} = \max \begin{cases} 0, & \text{(оценка менее предпочтительного продукта в решении } K) - \\ - & \text{(оценка более предпочтительного продукта в решении } K) \end{cases}$$

Если данный набор весов представляется «обратно предпочтительным», то назначается штраф, равный количеству обратной предпочтительности

Для нахождения весов решается задача

$$\min Z = Z_1 + Z_2 + Z_3 + Z_4 + Z_5$$

$$C + N + S + F + P = 1$$

$$Z_1 - 2C - 4N + 7S - 3F + 3P \ge 0$$

$$Z_2 + 2C + 8N - 5S + 4F - 6P \ge 0$$

$$Z_3 + 3N + 4S - 5F + P \ge 0$$

$$Z_4 - 3C + N + 3S + F + P \ge 0$$

$$Z_4 - C + 5N - 4S + 4F - 2P \ge 0$$

$$Z_K \ge 0 \left(K = \overline{1,5}\right) - C, N, S, F, P \ge 0$$

Значения весовых оценок признаков:

$$Z_1 = Z_2 = Z_3 = Z_4 = Z_5 = 0.$$

$$C = 0.3958$$
, $N = 0.3125$, $S = 0.2917$, $F = P = 0$,

Общие оценки каждого из продуктов

продукт 1:	4.333516,	(2)
продукт 2:	4.33333328,	(4)
продукт 3:	6.16666666,	(1)
продукт 4:	4.06250002,	(5)
продукт 5:	4.3333333.	(3)

Симплекс метод целевого программирования

Пусть цели проранжированы в порядке убывания их важности

$$P_1 >>> P_2 >>> P_3 >>> \dots >>> P_n$$

Тогда модель приоритетного целевого программирования выглядит следующим образом

$$\min Z = P_1 S_1^- + P_2 S_2^- + P_3 S_3^-$$

$$7x_1 + 3x_2 + S_1^- - S_1^+ = 40,$$

$$10x_1 + 5x_2 + S_2^- - S_2^+ = 60,$$

$$5x_1 + 4x_2 + S_3^- - S_3^+ = 35,$$

$$100x_1 + 60x_2 \leq 600,$$

$$x_1 \geq 0, \ x_2 \geq 0, \ S_j^{+(-)} \geq 0, \ j = 1,2,3.$$

 Разделим целевую функцию п на компонент по числу рассматриваемых целей

$$Z_1 = P_1 S_1^ Z_2 = P_2 S_2^ Z_3 = P_3 S_3^-$$

 Чтобы подготовить задачу к решению с помощью симплекс метода целевого программирования рассчитаем *п* строк целевой функции, где *i*-я строка, соответствует *i*-й цели для цели 1: $Z_1 - P_1 S_1^- = 0$

для цели 2: $Z_2 - P_2 S_2^- = 0$

для цели 3: $Z_3 - P_3 S_3^- = 0$

Исходный допустимый базис $BV = \{S_1^-, S_2^-, S_3^-, S_4^-\}$

S₄ – свободная переменная для 4-го ограничения

Для каждой цели имеем

$$S_{1}^{-} = 40 - 7 x_{1} - 3 x_{2} + S_{1}^{+},$$

$$S_{2}^{-} = 60 - 10 x_{1} - 5 x_{2} + S_{2}^{+},$$

$$S_{3}^{-} = 35 - 5 x_{1} - 4 x_{2} + S_{3}^{+}.$$

Цель 1: $Z_1 + 7P_1x_1 + 3P_1x_2 - P_1S_1^+ = 40P_1$

Цель 2: $Z_2 + 10P_2x_1 + 5P_2x_2 - P_2S_2^+ = 60P_2$

Цель 3: $Z_3 + 5P_3x_1 + 4P_3x_2 - P_3S_3^+ = 35P_3$

Различия между ЦСМ и основной его версией

Стандартный СМ оперирует с одной строкой целевой функции, в то время как ЦСМ требует наличия п строк целевой функции (по числу целей);

Для определения переменной, входящей в базис, в ЦСМ используется следующий прием:

- 1. находится цель с наивысшим приоритетом (цель *i**), которая еще не достигнута; отыскивается переменная с наибольшим положительным коэффициентом в данной строке (для цели *i**);
- 2. эта переменная вводится в базис, что позволяет снизить значение Z_{i^*} и гарантирует приближение к цели i^* ;

если ни одна из переменных из строки і* 3. не может быть введена в базис, то невозможно приблизиться к достижению цели і* без увеличения отклонения от некоторой другой цели с более высоким приоритетом (в этом случае переходим к следующей строке целевой функции, соответствующей цели i^*+1 , в попытке приблизиться к цели i^*+1);

 когда осуществляется цикл пересчета, он касается всех строк целевой функции; таблица принесет оптимальный результат в том случае, либо когда все цели достигнуты (т.е. когда $Z_1 = Z_2 = ... = Z_n = 0$), либо когда любая переменная, которая может быть введена в базис и снизить значение Z_{i*} неудовлетворенной цели і*, увеличит отклонение от некоторой цели і, имеющей более высокий приоритет

$S_1^- = 40, S_2^- = 60, S_3^- = 35, S_4^- = 600$

	D ₁	3_1 3_2 3_3 3_4 3_5							
Ба-			X ₁	X ₂	S ₁ ⁺	S ₂ ⁺	S ₃ ⁺	S ₁ -	S ₂ -
ЗИС	ис С _ј	b _i 0	0	0	0	0	0	P ₁	P ₂
S ₁ -	P ₁	40	7	3	-1	0	0	1	0

3P₁

4P₂

5P₃

-P₁

-1

 $-P_3$

-1

 $-P_2$

P₂

 P_3

S2-

S₃-

S₄

 $\mathbf{Z}_1 - \mathbf{C}_j$

 $\mathbf{Z}_2 - \mathbf{C}_j$

 $Z_3 - C_j$

40P₁

60P₂

35P₃

7P₁

10P₂

5P₃

S₄

Симп. отн.

40/7 < 6

S₃-

 P_3

$x_1 = $	$\frac{40}{7}$	$S_{2}^{-} = \frac{20}{7}$	S_3^-	$=\frac{45}{7}$	$S_4 = \frac{20}{5}$	<u>)0</u> 7	$Z_{_1}$	=0		ль 1 тигн	нута	
Ба-	C _i	b _i	X ₁	X ₂	S ₁ ⁺	S ₂ ⁺	S ₃ ⁺	S ₁ -	S ₂ -	S ₃ -	S ₄	Симп.
ЗИС			0	0	0	0	0	P ₁	P ₂	P ₃	0	отн.
X ₁	0	40/7	1	3/7	-1/7	0	0	1/7	0	0	0	-
S ₂ ⁻	P ₂	20/7	0	5/7	10/7	-1	0	-10/7	1	0	0	2
S ₃ ⁻	P ₃	45/7	0	13/7	5/7	0	-1	-5/7	0	1	0	9
S ₄	0	200/7	0	120/7	100/7	0	0	-100/7	0	0	1	2
$Z_1 - C_j$	3-1	0	0	0	0	0	0	-P ₁	0	0	0	
$Z_2 - C_j$	-	20P ₂ /7	0	5P ₂ /7	10P ₂ /7	-P ₂	0	-10P ₂ /7	0	0	0	
$Z_3 - C_j$		45P ₃ /7	0	13P ₃ /7	5P ₃ /7	0	-P ₃	-5P ₃ /7	0	0	0	

Достигнуты $x_1 = 6, S_2^- = 0, S_3^- = 5, S_1^+ = 2$ $Z_1 = Z_2 = 0$

1 / 2 / 3				3	у при							
Ба- зис	C.	b,	x ₁	X ₂	S ₁ ⁺	S ₂ ⁺	S ₃ ⁺	S ₁ -	S ₂ -	S ₃ -	S ₄	Симп.
ЗИС			0	0	0	0	0	P ₁	P ₂	P ₃	0	отн.

-1

 $-P_2$

-1

 $-P_3$

-1

-P₁

1/100

-1/10

-1/20

7/100

-P₂/10

-P₃/20

5P₃

P₂

 P_3

X₁

S₂-

S3-

S₁+

 $Z_1 - C_j$

 $Z_2 - C_i$

 $Z_3 - C_i$

3/5

-1

6/5

 $-P_2$

 P_3

Единственным способом достичь третью цель является нарушение второй цели, которая является более высокой по приоритету, чем третья цель. Так как это невозможно, то мы имеем дело с таблицей с оптимальным решением.

Оптимальное решение - покупка 6 мин. рекламы в период трансляции футбольных матчей и ни одной минуты во время трансляции сериалов.

Первая и вторая цели полностью достигнуты, а третья – не достигнута.