Математические методы исследования операций

featuring

Математическое программирование

Преподаватель –

Иванов Сергей Николаевич,

доцент кафедры «Математики и математических методов в экономике»

Структура дисциплин

(весенний семестр)

ММИО

лекции - 34 часа

практические - 17 часов

лабораторные - 17 часов

форма контроля - экзамен

• MII

лекции - 18 часов

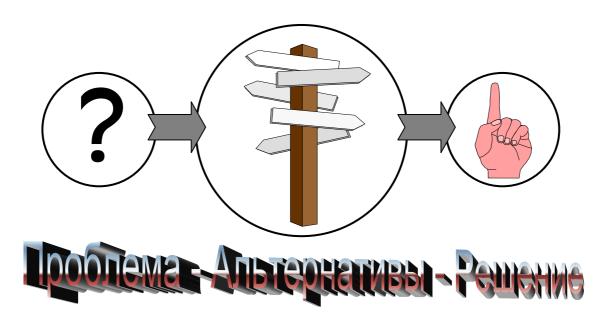
практические - 16 часов

форма контроля - зачет

Литература

- 1. Иванов С.Н., Хауншмид Й. Математические методы исследования операций (базовый уровень): Учебное пособие. Донецк: ДонГУ, 1999. 617 с.
- 2. Вагнер Г. Основы исследования операций (в 3-х томах). М.: Мир, 1972-1973.
- 3. Вентцель Е.С. Исследование операций: задачи, принципы, методология. М.: Наука, 1980. 208 с.

Литература


- 4. Данциг Дж. Линейное программирование, его обобщения и применения. М.: Прогресс, 1966. 600 с.
- 5. Исследование операций в экономике: Учебн. пособие для вузов/ Н.Ш.Кремер, Б.А.Путко, И.М.Тришин, М.Н.Фридман; Под ред. проф. Н.Ш. Кремера. М.: Банки и биржи, ЮНИТИ, 1997. 407 с.
- 6. Кузнецов Ю.Н., Кузубов В.И., Волощенко А.В. Математическое программирование: Учеб. пособие. М.: Высш. шк., 1985. 301 с.

Литература

- 7. Методические указания и задачи по математическому программированию: Для студентов экономических специальностей / В.В. Христиановский, В.Г. Ерин, О.В. Ткаченко. Донецк: ДонГУ, 1980. 154 с.
- 8. Решение задач математического программирования: курс лекций для студентов экономических специальностей / В.В. Христиановский, В.Г. Ерин, О.В. Ткаченко. Донецк: ДонГУ, 1992. 254 с.
- 9. Сборник задач по математическому программированию: в помощь студентам-экономистам / В.В. Христиановский, В.Г. Ерин, О.В. Ткаченко. Киев: УМК ВО, 1992. 336 с.

«Ни одно человеческое исследование не может называться научным, пока оно не прошло проверки с помощью математических методов»

Леонардо да Винчи

• Экономика — это наука, которая изучает поведение человека относительно использования ограниченных ресурсов, средств производства, которые имеют множество применений.

Лайонел Роббинс (1932)

Использование оптимизационных моделей и методов важно для экономистов не только с точки зрения изучения поведения экономических объектов, но также и для выработки обоснованных решений.

Определение исследования операций

• Исследование операций – совокупность математических и количественных методов для принятия и обоснования решений в различных областях человеческой деятельности

• Исследование операций –

искусство давать плохие ответы на те практические вопросы, на которые даются еще более плохие ответы другими методами

Т. Саати

Определение

• Операция — действие или совокупность действий, направленных на достижение поставленной цели

Предмет изучаемого курса –

• системы, совокупность объектов которых функционирует для достижения определенной цели

Методы исследования операций

- ⇒ Математическое программирование
- линейное
- целочисленное
- нелинейное
- динамическое
- выпуклое
- стохастическое
- и т.д.
- ⇒ Теория графов

Методы исследования операций

- ⇒ Методы сетевого моделирования
- ⇒ Теория игр
- ⇒ Методы статистического моделирования
- ⇒ Теория управления запасами
- ⇒ Теория расписаний
- ⇒ Теория массового обслуживания
- ⇒ Принцип максимума Л.С.Понтрягина
- ⇒ и др.

Определение математического программирования

* Математическое программирование

область математики, разрабатывающая теорию и численные методы решения экстремальных задач с ограничениями

1930 г. – постановка задачи линейного программирования в виде предложения по составлению плана перевозок (А.Н.Толстой)

1931 г. – математическая постановка и решение «проблемы выбора». Венгерский метод (Б.Эгервари)

1932 г. – метод «затраты-выпуск» (В.Леонтьев)

1939 г. – метод разрешающих множителей (Л.В.Канторович)

1941 г. – постановка транспортной задачи (Ф.Л.Хичкок)

1947 г. – симплекс метод (Дж.Данциг)

1949 г. – метод потенциалов для решения транспортной задачи (Л.В.Канторович, М.К.Гавурин)

1951 г. – формулировка необходимых и достаточных условий оптимальности для решения нелинейных задач (Г.В.Кун, А.В.Таккер)

1954 г. – приближенный метод решения задач с сепарабельными выпуклыми функциями цели и линейными ограничениями (А.Чарнес, К.И.Лемке)

1955 г. – разработки по квадратическому программированию (И.М.Л.Бил, Е.В.Баранкин, Р.Дорфман, М.Франк, Ф.Вольф и др.)

1957 г. – динамическое программирование (Р.Беллман)

и т.д.

Математическое моделирование и математическая модель

• Математическое моделирование –

это попытка описать некоторую часть реального мира в математических терминах

◆ Математическая модель –

это такая модель, составными частями которой являются математические символы, переменные, константы, функции, ограничения, неравенства и т.д.

ACCTPAKTHE CTPYKTYPHEIC

Математические Портретные

Значения понятия «Модель»

- 1. Модель это образец какого-нибудь изделия, а также образец для изготовления чего-нибудь. Например, модель платья, модель для литья и т.д.
- 2. Уменьшенное (или в натуральную величину) воспроизведение или схема чего-нибудь. Например, модель корабля, здания, самолета и т.д., маятник, как модель для воспроизведения колебаний в изменениях общественного мнения.

Значения понятия «Модель»

- 3. Тип, марка конструкции (новая модель автомобиля).
- 4. Схема какого-нибудь явления или физического объекта: модель атома, модель искусственного языка.

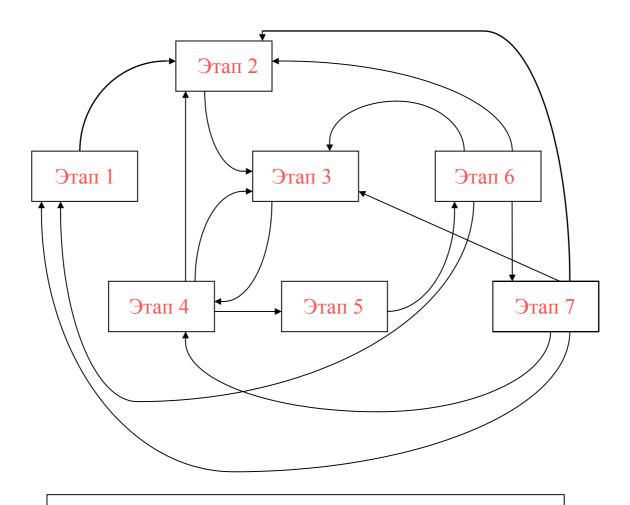
Математическая модель экономического процесса

■абстрактная запись основных закономерностей процесса или явления с помощью математических формул и соотношений

Классификация математических моделей

- **4** Линейные и нелинейные
- **С** непрерывными и дискретными переменными
- **4** Детерминированные и стохастические
- **4** Статические и динамические
- **4** Оптимизационные и описательные
- **4** Вариантные и безвариантные

тип модели	ПРИЗНАК НЕОПРЕДЕЛЕННОСТИ	ЧАСТОТА ИСПОЛЬЗОВАНИЯ
Линейное программирование	Детерминированные	Высокая
Сетевые (включая PERT/CPM)	Детерминированные Стохастические	Высокая
Управление запасами Производство Построение расписаний	Детерминированные Стохастические	Высокая
Эконометрия Прогнозирование Имитация	Детерминированные Стохастические	Высокая
Целочисленное программирование	Детерминированные	Низкая
Динамическое программирование	Детерминированные Стохастические	Низкая


Стохастическое программирование	Стохастические	Низкая
Нелинейное программирование	Детерминированные	Низкая
Теория игр	Стохастические	Низкая
Оптимальный контроль	Детерминированные Стохастические	Низкая
Теория очередей	Стохастические	Низкая
Дифференциальные уравнения	Детерминированные	Низкая

Методология исследования операций

- Постановка задачи
- # Исследование объекта
- Формулировка математической модели проблемы
- Верификация модели (проверка на достоверность)

Методология исследования операций

- Выбор подходящей альтернативы (решение задачи)
- * Анализ полученных результатов и выработка заключений об исследуемом объекте
- # Внедрение и оценка рекомендаций

Взаимосвязи между этапами решения задачи

- ▶ Математическим эквивалентом цели операции является показатель или критерий эффективности, или оптимальности
- ► Критерий оптимальности показатель, характеризующий предельную меру эффекта, получаемого от реализации принятого решения, служащий для сравнения различных вариантов решений и выбора наилучшего из них

Постановка задачи исследования операций

На исход операции влияют 3 группы факторов

- 1) Заранее заданные факторы (условия проведения операции) $\alpha_1, \alpha_2, ..., \alpha_n$
- 2) факторы, зависящие от принимаемого решения (элементы решения) x_1, x_2, \dots, x_m
- 3) неизвестные условия или факторы, которые заранее определить либо невозможно, либо возможно с некоторой вероятностью y_1, y_2, \dots, y_s

• Когда эффективность операции зависит от первых двух групп факторов, то мы имеем дело с детерминированной задачей исследования операций

$$W = W(\alpha_1, \alpha_2, \dots, \alpha_n; x_1, x_2, \dots, x_m)$$

• Формулировка задачи: при заданных условиях $\alpha_1, \alpha_2, \dots, \alpha_n$ найти такие элементы решения x_1, x_2, \dots, x_m , при которых показатель эффективности достигает либо максимума, либо минимума.

• Когда эффективность операции зависит от трех групп факторов, то мы имеем дело с задачей принятия решений в условиях неопределенности или риска:

$$W = W(\alpha_1, \alpha_2, ..., \alpha_n; y_1, y_2, ..., y_s; x_1, x_2, ..., x_m)$$

•Формулировка задачи: при заданных условиях $\alpha_1, \alpha_2, ..., \alpha_n$ с учетом неизвестных факторов $y_1, y_2, ..., y_s$ найти такие элементы решения $x_1, x_2, ..., x_m$, которые по возможности позволяют показателю эффективности достичь либо максимального, либо минимального значения.