ТЕМА 2. ПОСТРОЕНИЕ ОБОБЩЕННОЙ РЕГРЕССИОННОЙ МОДЕЛИ Расчет параметров модели в матричной форме

Рассмотренная линейная парная регрессионная модель является частным случаем, так как на большинство экономических процессов и явлений оказывает влияние множество факторов. Например, уровень потребления населения зависит от величины доходов, уровня цен, экономической ситуации, состава семьи, склонности к сбережению и т.п. Производительность труда рабочего зависит от технического уровня производства, степени его механизации и автоматизации, квалификации рабочего, организационного уровня производства, морального климата в коллективе и других факторов.

Многофакторные модели требуют для своего построения большего объема информации и, как следствие, большего, чем однофакторные объема вычислений. В связи с этим для их разработки широко применяются пакеты прикладных программ с расчетами на ПЭВМ.

Этапы построения многофакторной модели такие же как и однофакторной. Напомним их:

- постановка задачи;
- спецификация модели;
- формирование массива информации;
- оценка параметров модели методом 1МНК;
- проверка модели и ее параметров на адекватность;
- анализ полученных результатов, прогнозирование.

Между отдельными этапами могут возникать обратные связи. В частности, после проверки модели на адекватность может несколько раз повторяться этап спецификации модели для того, чтобы обеспечить построение адекватной модели.

Ошибки спецификации можно разбить на три группы

- не включение в модель существенно влияющего фактора (факторов) приводит к неточным (смещенным) оценкам;
- включение в модель несущественно влияющего фактора (факторов) гарантирует неверное измерение количественной связи между показателями и, как результат, переменная, которая не должна присутство-

вать в модели, может показать существенный уровень связи с зависимой переменной;

 использование видов зависимостей, не соответствующих истинной форме связи, – приводит к получению смещенных оценок.

Для многофакторных моделей условия применения метода наименьших квадратов остаются теми же, что и для однофакторной. Рассмотрим расчет параметров модели в матричной форме.

С этой целью введем обозначения. Пусть

Y – вектор-столбец наблюдений зависимой переменной y,

 X – матрица наблюдений независимых переменных (включает в себя столбец единиц с целью расчета свободного члена уравнения регрессии),

 \widehat{A} – вектор-столбец оцениваемых параметров регрессионной модели,

u – вектор-столбец остатков (отклонений, ошибок).

Тогда, исходя из общей записи уравнения регрессии

$$Y = XA + u$$
,

имеем

$$u = Y - \widehat{Y}$$
,

где $\widehat{Y} = X\widehat{A}$ – оценка уравнения регрессии.

Сумма квадратов остатков определяется из выражения

$$\sum u^2 = u'u = (Y - X\widehat{A})'(Y - X\widehat{A}) = Y'Y - 2\widehat{A}'X'Y + \widehat{A}'X'X\widehat{A}.$$

В данном и в последующих выражениях символ $\binom{\prime}{}$ определяет операцию транспонирования.

Для нахождения параметров матрицы \widehat{A} продифференцируем полученное выражение по \widehat{A} и приравняем производные к нулю

$$\frac{\partial (u'u)}{\partial \widehat{A}} = -2X'Y + 2X'X\widehat{A} = 0,$$

откуда

$$\widehat{A} = (X'X)^{-1}X'Y.$$

Рассмотрим на **примере** расчет параметров уравнения регрессии. Пусть нам необходимо определить, как товарооборот сети магазинов зависит

от их торговой площади и среднедневной интенсивности потока покупателей	
на основе следующего набора данных	

Магазин	Товарооборот, сотен	Торговая площадь,	Среднедневная интенсивность по-		
Магазин	тыс. грн.	тыс. м ²	тока покупателей, тыс. чел.		
1	2,93	0,31	10,24		
2	5,27	0,98	7,51		
3	6,85	1,21	10,81		
4	7,01	1,29	9,89		
5	7,02	1,12	13,72		
6	8,35	1,49	13,92		
7	4,33	0,78	8,54		
8	5,77	0,94	12,36		
9	7,68	1,29	12,27		
10	3,16	0,48	11,01		
11	1,52	0,24	8,25		
12	3,15	0,55	9,31		

Исходя из этого, имеем следующие матрицы исходных данных (матрицы X и X' содержат единичные векторы для расчета свободного члена $\widehat{a}_{\scriptscriptstyle 0}$ уравнения регрессии)

Найдем составляющие формулы $\widehat{A} = (X'X)^{\!-\!1} X'Y$ для расчета параметров вектора \widehat{A}

$$\widehat{A} = \begin{pmatrix} \widehat{a}_0 \\ \widehat{a}_1 \\ \widehat{a}_2 \end{pmatrix}.$$

Рассчитаем произведение матриц $X^{\prime}X$

$$X'X = \begin{pmatrix} 12 & 10,68 & 127,83 \\ 10,68 & 11,4058 & 118,973 \\ 127,83 & 118,973 & 1410,14 \end{pmatrix}.$$

Найдем обратную по отношению к полученной матрицу одним из известных способов (методом Жордана–Гаусса, с помощью присоединенной матрицы и т.п.)

$$(X'X)^{-1} = \begin{pmatrix} 2,47452 & 0,18978 & -0,2403 \\ 0,18978 & 0,74547 & -0,0801 \\ -0,2403 & -0,0801 & 0,02925 \end{pmatrix}.$$

Рассчитаем произведение X'Y

$$X'Y = \begin{pmatrix} 63,04\\66,0611\\704,692 \end{pmatrix}.$$

Наконец, подставив полученные значения выражений $(X'X)^{\!\!-1}$ и X'Y в формулу для расчета $\widehat{A}=(X'X)^{\!\!-1}X'Y$, найдем составляющие вектора \widehat{A}

$$\widehat{A} = \begin{pmatrix} -0.8319 \\ 4.74295 \\ 0.17499 \end{pmatrix}.$$

Таким образом, регрессионная модель имеет вид:

$$\widehat{y} = -0.8319 + 4.74295x_1 + 0.17499x_2$$

Интерпретация модели следующая: коэффициенты регрессии показывают, что при изменении размера торговой площади на одну тысячу м², при прочих равных условиях, товарооборот увеличится на 4,74 сотен тыс. грн., а при увеличении среднедневного потока покупателей на одну тыс. чел., при прочих равных условиях, он возрастет на 0,175 сотен тыс. грн.

Свойства оценок параметров

Рассчитанные оценки модели с помощью метода 1МНК должны обладать свойствами:

- 1. несмещенности;
- 2. обоснованности;
- 3. эффективности;
- 4. инвариантности.

<u>Первое свойство</u> предполагает, что оценка будет несмещенной, если ее математическое ожидание равно A:

$$M(\widehat{A}) = A$$
.

Данное заключение вытекает из следующих рассуждений. Используя уравнение регрессии в общем виде Y = XA + u, путем преобразований (умножая левую и правую части на $(X^{\prime}X)^{-1}X^{\prime}$) приведем его к виду

$$(X'X)^{-1}X'Y = (X'X)^{-1}X'XA + (X'X)^{-1}X'u.$$

Так как $(X^T X)^{-1} X^T X = E$, то имеем

$$M[(X'X)^{-1}X'Y] = M[A + (X'X)^{-1}X'u]$$

ИΛИ

$$M[\widehat{A}] = A + (X'X)^{-1}X'M(u).$$

А, учитывая, что M(u) = 0 в соответствии с первым условием применения метода 1МНК, то

$$M(\widehat{A}) = A$$
.

Таким образом, оценки параметров модели будут несмещенными, если математическое ожидание их выборочных значений, найденных при много-кратном повторении выборки, не отличается от истинного значения.

Смещение определяется как

$$Q = M(\widehat{A}) - A$$
.

Наличие смещенности (или ее отсутствие) может быть проверено с помощью отношения среднеквадратического отклонения к абсолютной величине оценки

$$\frac{\sigma_{a_i}}{|\widehat{a}_i|}$$

В случае если величина отношения превышает 10%, то делают вывод о смещенности оценки.

Второе свойство может быть определено следующим образом: выборочная оценка \hat{A} называется обоснованной, если для любого сколь угодно малого числа $\varepsilon>0$ выполняется соотношение

$$\lim_{n\to\infty} P\left\{|\widehat{A}-A|<\varepsilon\right\} = 1.$$

Иначе, оценка считается обоснованной, если она удовлетворяет закону больших чисел.

Третье свойство предполагает, что выборочные оценки вектора \widehat{A} будут только тогда эффективными, когда их дисперсии будут наименьшими. Данное свойство определяется **теоремой Гаусса-Маркова**: функция оценивания по методу 1МНК покомпонентно минимизирует дисперсию всех линейных несмещенных функций вектора оценок \widehat{A} :

$$\sigma_{\widehat{A}}^2 \leq \sigma_{\overline{A}}^2$$
 для $j = \overline{1,m}$,

где $\sigma_{\widehat{A}}^{\,2}$ – дисперсия оценок \widehat{A} , определенная методом 1МНК, $\sigma_{\widehat{A}}^{\,2}$ – дисперсия оценок \overline{A} , определенных другими способами.

Исходя из этого, функция оценивания 1МНК \widehat{A} в классической линейной модели является лучшей линейно несмещенной функцией оценивания (с англ. BLUE – $Best\ Linear\ Unbiased\ Estimator$).

Величина дисперсии оценок параметров зависит от количества наблюдений, спецификации модели и точности метода оценивания параметров.

<u>Четвертое свойство</u> дает возможность использовать функции от выборочных оценок. По определению: оценка \widehat{A} параметров A называется инвариантной, если для произвольно заданной функции g оценка параметров функции g(A) представляется в виде $g(\widehat{A})$.

Так, зная коэффициент множественной детерминации, можно найти коэффициент множественной корреляции, используя значение выборочной дисперсии, можно определить среднеквадратическое отклонение искомой величины и т.д.

Коэффициенты корреляции, детерминации, эластичности

Для оценки тесноты связи между рассматриваемыми в модели показателями рассчитываются коэффициенты парной корреляции. Расчет коэффициентов парной корреляции может быть осуществлен по формулам

$$r_{y/x_j} = \frac{\operatorname{cov}(x_j, y)}{\sqrt{\operatorname{var}(x_j)\operatorname{var}(y)}}; \quad r_{x_l/x_j} = \frac{\operatorname{cov}(x_j, x_l)}{\sqrt{\operatorname{var}(x_j)\operatorname{var}(x_l)}}$$

или нижеописанным способом.

С этой целью исходные данные предварительно нормируются

$$y_i^* = \frac{y_i - \overline{y}}{\sigma_y}, \qquad x_{ij}^* = \frac{x_{ij} - \overline{x}_j}{\sigma_{x_i}},$$

где y_i^* – нормированное значение i -го наблюдения зависимой переменной

 x_{ij}^* – нормированное значение i -го наблюдения j -й независимой переменной.

Далее, используя векторы нормированных значений переменных Y^{*} и X_{i}^{*} , рассчитывают коэффициенты парной корреляции

$$r_{y/x_j} = \frac{1}{n} (Y^*)' X_j^* \text{ if } r_{x_l/x_j} = \frac{1}{n} (X_l^*)' X_j^*.$$

Для расчета коэффициентов парной корреляции найдем нормированные значения наблюдений переменных модели. Занесем данные в таблицу

Наблюдение	y^*	x_1^*	x_2^*	
1	-1,100378	-1,457381	-0,205323	
2	0,007894	0,226145	-1,564188	
3	0,756214	0,804073	0,078396	
4	0,831994	1,005091	-0,379536	
5	0,836730	0,577927	1,526856	
6	1,466645	1,507636	1,626407	
7	-0,437309	-0,276400	-1,051502	
8	0,244704	0,125636	0,849913	
9	1,149319	1,005091	0,805115	
10	-0,991445	-1,030218	0,177947	
11	-1,768183	-1,633272	-1,195851	
12	-0,996182	-0,854327	-0,668233	

Рассчитаем коэффициенты парной корреляции

$$r_{y/x_1} = \frac{1}{12} \cdot (-1,1003 \quad 0,0079 \quad \cdots \quad -0,9962) \cdot \begin{pmatrix} -1,4574 \\ 0,2261 \\ \vdots \\ -0,8543 \end{pmatrix} = 0,9843,$$

$$r_{y/x_2} = \frac{1}{12} (-1,1003 \quad 0,0079 \quad \cdots \quad -0,9962) \cdot \begin{pmatrix} -0,2053 \\ -1,5642 \\ \vdots \\ -0,6682 \end{pmatrix} = 0,65141,$$

$$r_{x_1/x_2} = \frac{1}{12} \cdot (-1,4574 \quad 0,2261 \quad \cdots \quad -0,8543) \cdot \begin{pmatrix} -0,2053 \\ -1,5642 \\ \vdots \\ -0,6682 \end{pmatrix} = 0,5424.$$

С учетом этого матрица коэффициентов парной корреляции выглядит следующим образом:

$$r = \begin{pmatrix} 1 & 0.9843 & 0.65141 \\ 0.9843 & 1 & 0.5424 \\ 0.65141 & 0.5424 & 1 \end{pmatrix}.$$

Коэффициент множественной детерминации может быть рассчитан следующим образом:

$$R^{2} = \frac{\sum_{i=1}^{n} (\widehat{y}_{i} - \overline{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}} = \frac{\sum_{i=1}^{n} (\widehat{Y} - \overline{Y})^{2}}{\sum_{i=1}^{n} (Y - \overline{Y})^{2}} = \frac{\widehat{A}' X' Y}{Y' Y}$$

или

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \widehat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}} = 1 - \frac{\sum_{i=1}^{n} (Y - \widehat{Y})^{2}}{\sum_{i=1}^{n} (Y - \overline{Y})^{2}} = 1 - \frac{u'u}{Y'Y}.$$

Данные формулы не учитывают числа степеней свободы и при увеличении в модели количества независимых переменных значение коэффициента множественной детерминации не уменьшается, а даже растет. В связи с этим в чистом виде он не может быть использован для проверки адекватности модели, так как при его расчете необходимо учитывать степени свободы (а с до-

бавлением каждой независимой переменной в модель без увеличения числа наблюдений они уменьшаются на единицу). В связи с этим используются формулы для расчета скорректированного коэффициента множественной детерминации \overline{R}^2 . В частности

$$\overline{R}^2 = 1 - \left(1 - R^2\right) \cdot \frac{n-1}{n-k}.$$

Коэффициент множественной корреляции равен квадратному корню из коэффициента множественной детерминации

$$R = \sqrt{R^2}$$
.

Он характеризует тесноту связи всех независимых переменных и зависимой. Его величина всегда положительна (в отличие от коэффициента парной корреляции).

Применение формул для расчета коэффициента множественной детерминации требует дополнительных расчетов составляющих этих формул.

Магазин	у	$y - \overline{y}$	$(y-\overline{y})^2$	$\widehat{\mathcal{Y}}$	$\widehat{y} - \overline{y}$	$(\widehat{y}-\overline{y})^2$	$(y-\bar{y})(\bar{y}-\bar{y})$	$y-\widehat{y}$	$(y-\widehat{y})^2$
1	2,93	-2,32	5,40	2,43024	-2,82	7,97	6,55896	0,50	0,2498
2	5,27	0,02	0,00	5,1303	-0,12	0,02	-0,00205	0,14	0,0195
3	6,85	1,60	2,55	6,79864	1,55	2,39	2,46734	0,05	0,0026
4	7,01	1,76	3,09	7,01708	1,76	3,11	3,09833	-0,01	0,0001
5	7,02	1,77	3,12	6,88099	1,63	2,65	2,87553	0,14	0,0193
6	8,35	3,10	9,59	8,67087	3,42	11,68	10,58300	-0,32	0,1030
7	4,33	-0,92	0,85	4,36195	-0,89	0,79	0,82303	-0,03	0,0010
8	5,77	0,52	0,27	5,78927	0,54	0,29	0,27690	-0,02	0,0004
9	7,68	2,43	5,89	7,43355	2,18	4,75	5,29068	0,25	0,0607
10	3,16	-2,09	4,38	3,37128	-1,88	3,54	3,93974	-0,21	0,0446
11	1,52	-3,73	13,94	1,75001	-3,50	12,27	13,07905	-0,23	0,0529
12	3,15	-2,10	4,42	3,40581	-1,85	3,41	3,88594	-0,26	0,0654
Сумма			53,50			52,88	52,87650		0,6194

В результате применения любой из ранее описанных формул получаем значение коэффициента множественной детерминации

$$R^2 = 0.98842$$
.

Скорректированный коэффициент множественной детерминации для нашего примера будет равен

$$\overline{R}^2 = 0.98585$$
.

Рассчитаем коэффициент множественной корреляции

$$R = \sqrt{0.98842} = 0.99419314$$
.

Приведенные результаты позволяют сделать вывод о высокой тесноте связи между отобранными факторами и товарооборотом магазинов. Именно вариация данных факторов на 98,585% объясняет вариацию зависимой переменной.

Коэффициенты эластичности для линейной многофакторной модели рассчитываются по формуле

$$E_{y/x_j} = \frac{\partial y}{\partial x_j} \cdot \frac{\overline{x}_j}{\overline{y}}.$$

Вычислим коэффициенты эластичности, для чего сначала найдем средние величины используемых в модели показателей

$$\bar{y} = 5,25333$$
, $\bar{x}_1 = 0,89$, $\bar{x}_2 = 10,6525$,

Искомые коэффициенты равны

$$E_{y/x_1} = \frac{\partial y}{\partial x_1} \cdot \frac{\overline{x}_1}{\overline{y}} = \hat{a}_1 \cdot \frac{\overline{x}_1}{\overline{y}} = 4,74295 \cdot \frac{0,89}{5,25333} = 0,80353,$$

$$E_{y/x_2} = \frac{\partial y}{\partial x_2} \cdot \frac{\overline{x}_2}{\overline{y}} = \widehat{a}_2 \cdot \frac{\overline{x}_2}{\overline{y}} = 0,17499 \cdot \frac{10,6525}{5,25333} = 0,35483.$$

Таким образом, увеличение торговой площади на 1%, при прочих равных условиях, повлечет за собой рост товарооборота на 0,80353%, а увеличение среднедневной интенсивности потока покупателей также на 1%, при прочих равных условиях, повлечет рост товарооборота на 0,35483%.

Дисперсионно-ковариационная матрица

Для оценки значимости параметров регрессионной модели и доверительных интервалов их изменения рассчитывается дисперсионно-ковариационная матрица $Var(\widehat{A})$

$$Var(\widehat{A}) = \widehat{\sigma}_{u}^{2}(X'X)^{-1} = \begin{pmatrix} \widehat{\sigma}_{a_{0}}^{2} & \operatorname{cov}(\widehat{a}_{0}, \widehat{a}_{1}) & \cdots & \operatorname{cov}(\widehat{a}_{0}, \widehat{a}_{m}) \\ \operatorname{cov}(\widehat{a}_{1}, \widehat{a}_{0}) & \widehat{\sigma}_{a_{1}}^{2} & \cdots & \operatorname{cov}(\widehat{a}_{1}, \widehat{a}_{m}) \\ \vdots & \vdots & \vdots & \vdots \\ \operatorname{cov}(\widehat{a}_{m}, \widehat{a}_{0}) & \operatorname{cov}(\widehat{a}_{m}, \widehat{a}_{1}) & \cdots & \widehat{\sigma}_{a_{m}}^{2} \end{pmatrix}$$

Главная диагональ матрицы представлена оценками дисперсий $\widehat{\sigma}_{a_j}$ j-х оценок параметров, вне главной диагонали находятся оценки ковариаций между \widehat{a}_i и \widehat{a}_i .

Чем большими будут значения дисперсий и ковариаций, тем менее существенной может оказаться значимость модели, и тем более широкими будут доверительные интервалы для оцененных параметров и зависящих от них интервалов прогноза зависимой переменной.

Составляющая формулы дисперсионно-ковариационной матрицы – оценка дисперсии ошибок $\widehat{\sigma}_u^2$ в матричной форме рассчитывается следующим образом:

$$\widehat{\sigma}_{u}^{2} = \frac{u'u}{n-k} = \frac{Y'Y - \widehat{A}'X'Y}{n-k},$$

где n-k – число степеней свободы.

Для того чтобы осуществить расчет интересующей нас матрицы, определим предварительно расчетные значения \hat{y}_i и величины остатков u_i

$$\widehat{Y} = \begin{pmatrix} 2,43 \\ 5,13 \\ 6,799 \\ 7,017 \\ 6,881 \\ 8,671 \\ 4,362 \\ 5,789 \\ 7,434 \\ 3,372 \\ 1,75 \\ 3,406 \end{pmatrix}, \qquad u = \begin{pmatrix} 0,5 \\ 0,14 \\ 0,051 \\ -0,007 \\ 0,139 \\ -0,321 \\ -0,032 \\ -0,019 \\ 0,246 \\ -0,211 \\ -0,23 \\ -0,256 \end{pmatrix}$$

Рассчитаем составляющие формулы оценки дисперсии ошибок для нашего примера

$$Y'Y = 384,666$$
,
 $\hat{A}'X'Y = 384,04664$,

$$Y'Y - \hat{A}'X'Y = 0.61936$$
.

С учетом этого имеем

$$\hat{\sigma}_{..}^{2} = 0.06882$$
.

Дисперсионно-ковариационная матрица для нашей задачи имеет вид

$$Var(\widehat{A}) = \widehat{\sigma}_{u}^{2}(X'X)^{-1} = 0,06882 \cdot \begin{pmatrix} 2,47452 & 0,18978 & -0,2403 \\ 0,18978 & 0,74547 & -0,0801 \\ -0,2403 & -0,0801 & 0,02925 \end{pmatrix} = \begin{pmatrix} 0,17029 & 0,01306 & -0,0165 \\ 0,01306 & 0,0513 & -0,0055 \\ -0,0165 & -0,0055 & 0,00201 \end{pmatrix}$$

Таким образом,

$$\widehat{\sigma}_{a_0}^2=0{,}17029$$
 и, соответственно, $\widehat{\sigma}_{a_0}=0{,}41266$, $\widehat{\sigma}_{a_1}^2=0{,}0513$, $\widehat{\sigma}_{a_1}=0{,}2265$, $\widehat{\sigma}_{a_2}^2=0{,}00201$, $\widehat{\sigma}_{a_2}=0{,}004487$.

С помощью найденных среднеквадратических отклонений и оценок параметров \widehat{a}_{j} определим, являются ли найденные оценки смещенными, для чего рассчитаем отношения

$$\frac{\widehat{\sigma}_{a_0}}{|\widehat{a}_0|} = \frac{0.41233}{|-0.8319|} = 0.496,$$

$$\frac{\widehat{\sigma}_{a_1}}{|\widehat{a}_1|} = \frac{0.2265}{|4.74295|} = 0.048,$$

$$\frac{\widehat{\sigma}_{a_2}}{|\widehat{a}_2|} = \frac{0.04487}{|0.17499|} = 0.256.$$

Стандартные ошибки оценок относительно уровней параметров составляют, соответственно, 49,6%, 4,8% и 25,6%, что позволяет сделать вывод о смещенности оценок $\hat{a}_{_0}$ и $\hat{a}_{_2}$.

Проверка значимости модели и ее параметров

Проверка значимости модели осуществляется по критерию Фишера. Как известно, F -статистика Фишера рассчитывается по формуле

$$F_{pac^{q}.}=rac{MSR}{MSE}$$
 , где $MSR=rac{R^{2}}{k-1}$ и $MSE=rac{1-R^{2}}{n-k}$, откуда
$$F_{pac^{q}.}=rac{R^{2}(n-k)}{\left(1-R^{2}
ight)\!(k-1)}\,.$$

Полученное значение сравнивается с табличным (критическим) значением критерия для уровня значимости α и числа степеней свободы $\mathbf{v}_{_1}=k-1$ и $\mathbf{v}_{_2}=n-k$. Если

$$F_{pacy.} > F_{(k-1.n-k.\alpha)},$$

то уравнение считается значимым.

Проверим значимость уравнения регрессии по критерию Фишера. В нашем случае

$$F_{pac^{4}} = \frac{R^{2}(n-k)}{(1-R^{2})(k-1)} = \frac{0.98842(12-3)}{(1-0.98842)(3-1)} = 384,1781.$$

Табличное значение F -критерия при $\alpha=0.05$, $\nu_{_1}=k-1=3-1=2$ и $\nu_{_2}=n-k=12-3=9$ равно

$$F_{(2.9.0.05)} = 4,26$$
.

Так как 384,1781 > 4,26, то уравнение считается значимым.

<u>Стандартизированные коэффициенты регрессии (β -коэффициенты), коэффициенты частной детерминации</u>

Коэффициенты регрессии отражают соотношение между зависимой и независимыми переменными в тех единицах измерения, в каких они исчисляются. В силу этого, независимые переменные нельзя проранжировать по степени их влияния на результативный показатель по показателям коэффициента регрессии. Проблема может быть решена путем расчета стандартизированных коэффициентов регрессии (или β-коэффициентов), которые пока-

зывают влияние независимых переменных на зависимую в относительных единицах измерения

$$\beta_j = \widehat{a}_j \frac{\sigma_{x_j}}{\sigma_v}.$$

В терминах стандартизированных коэффициентов регрессии строятся также уравнения регрессии (т.н. стандартизированное уравнение регрессии)

$$\widetilde{y} = \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_m x_m.$$

Для условий нашего примера рассчитаем стандартизированные коэффициенты регрессии:

$$\beta_1 = 4,74295 \cdot \frac{0,39797}{2,1114} = 0,89399,$$

$$\beta_2 = 0.17449 \cdot \frac{2.00903}{2.1114} = 0.1665$$
.

По величинам β -коэффициентов можно сделать вывод, что влияние первого показателя на y значительно выше, чем второго.

Построим стандартизированное уравнение множественной регрессии:

$$\tilde{y} = 0.89399x_1 + 0.1665x_2$$
.

Помимо коэффициента множественной детерминации в многофакторной модели может быть рассчитан коэффициент частной детерминации. **Коэффициент частной детерминации** ΔR_j^2 показывает предельный (граничный) вклад j-го регрессора (независимой переменной) в R^2 (общую вариацию).

Он также показывает, на какую величину уменьшится коэффициент множественной детерминации, если j-ю переменную исключить из модели

$$\Delta R_j^2 = r_{y/x_i} \cdot \beta_j$$

И

$$R^2 = \Delta R_1^2 + \Delta R_2^2$$

Частные коэффициенты детерминации равны:

$$\Delta R_1^2 = 0.984 \cdot 0.894 = 0.87996$$
,

$$\Delta R_2^2 = 0.651 \cdot 0.1665 = 0.1084$$
.

Исходя из этого, почти 88% процентов общей вариации переменной y объясняется вариацией показателя торговой площади $(x_{_1})$ и почти 11% – вариацией среднедневного потока покупателей $(x_{_2})$.

$$R^2 = \Delta R_1^2 + \Delta R_2^2 = 0.87996 + 0.1084 = 0.9884$$
.

<u>Проверка значимости параметров модели</u> $\underline{\hat{a}_0},\ \hat{a}_1,\ \hat{a}_2,\dots,\ \hat{a}_n$ <u>и расчет доверительных интервалов</u>

Аналогично парной зависимости, в многофакторной модели проверка значимости параметров $\hat{a}_0,\;\hat{a}_1,\;\hat{a}_2,\ldots,\;\hat{a}_{\scriptscriptstyle m}$ осуществляется по критерию Стьюдента. С этой целью для каждого из показателей рассчитывается t-статистика Стьюдента

$$egin{aligned} t_{ar{a}_0} &= rac{\left|\widehat{a}_0
ight|}{\widehat{m{\sigma}}_{a_0}}\,, \ t_{ar{a}_1} &= rac{\left|\widehat{a}_1
ight|}{\widehat{m{\sigma}}_{a_1}}\,, \ t_{ar{a}_2} &= rac{\left|\widehat{a}_2
ight|}{\widehat{m{\sigma}}_{a_2}}\,, \ &dots \ t_{ar{a}_n} &= rac{\left|\widehat{a}_m
ight|}{\widehat{m{\sigma}}_{a_n}}\,. \end{aligned}$$

Значения $\widehat{\sigma}_{a_j}$ вычисляются на основе информации из дисперсионно-ковариационной матрицы $Var(\widehat{A}).$

Расчет доверительных интервалов осуществляется аналогично тому, как это было сделано для парной линейной зависимости

$$a_0^* = \widehat{a}_0 \pm t_{\alpha/2} \cdot \widehat{\sigma}_{a_0},$$

$$a_1^* = \widehat{a}_1 \pm t_{\alpha/2} \cdot \widehat{\sigma}_{a_1},$$

$$a_2^* = \widehat{a}_2 \pm t_{\alpha/2} \cdot \widehat{\sigma}_{a_2},$$

:

$$a_m^* = \widehat{a}_m \pm t_{\alpha/2} \cdot \widehat{\sigma}_{a_m}.$$

Оценим значимость параметров регрессионного уравнения:

$$t_{\bar{a}_0} = \frac{|\hat{a}_0|}{\hat{\sigma}_{a_0}} = \frac{|-0.831946|}{0.412663} = 2.016$$

$$t_{\bar{a}_1} = \frac{|\hat{a}_1|}{\hat{\sigma}_{a_1}} = \frac{|4.742948|}{0.226498} = 20.94$$

$$t_{\bar{a}_2} = \frac{|\hat{a}_2|}{\hat{\sigma}_{a_2}} = \frac{|0.174988|}{0.044868} = 3.9$$

Для $\alpha=0.05$ и n-k=12-3=9 $t_{(\alpha,n-k)}=2.262$. Сравнивая рассчитанные значения t-статистики с табличным, можно сделать вывод о значимости на данном уровне только двух параметров \widehat{a}_1 и \widehat{a}_2 .

Если задать уровень доверия $\alpha=0,1$, то при n-k=12-3=9 значение критерия Стьюдента составит $t_{(\alpha,n-k)}=1,833$, и показатель \widehat{a}_0 также можно считать значимым.

Определим доверительные интервалы для параметров модели $\widehat{a}_{_0}$, $\widehat{a}_{_1}$ и $\widehat{a}_{_2}$. В расчетах будем использовать табличное значение критерия Стьюдента с $\alpha=0{,}05$ и n-k=12-3=9 : $t_{_{(a/2,n-k)}}=2{,}262$.

$$a_0^* = \widehat{a}_0 \pm t_{\alpha/2} \cdot \widehat{\sigma}_{a_0} = -0.8319 \pm 2.262 \cdot 0.412663 = -0.8319 \pm 0.933$$
.

Откуда

$$-1.765 \le a_0^* \le 0.101$$

$$a_1^* = \widehat{a}_1 \pm t_{\alpha/2} \cdot \widehat{\sigma}_{a_1} = 4,7429 \pm 2,262 \cdot 0,2265 = 4,7439 \pm 0,512$$
,

$$4,23 \le a_1^* \le 5,255$$

$$a_2^* = \widehat{a}_2 \pm t_{\alpha/2} \cdot \widehat{\sigma}_{a_2} = 0,175 \pm 2,262 \cdot 0,045 = 0,175 \pm 0,1015$$
,

$$0.0735 \le a_2^* \le 0.2765$$
.

<u>Прогноз значений зависимой переменной \underline{y} и построение доверительных интервалов прогноза</u>

Различают точечный (для математического ожидания \hat{y}) и интервальный (для любого значения переменной) прогнозы и, соответственно, доверительные интервалы для точечного и интервального прогнозов. Чтобы рассчитать данные величины находят среднюю (стандартную) ошибку прогноза.

Для точечного прогноза:

$$\widehat{\sigma}_{n+1}^2 = \widehat{\sigma}_u^2 \cdot X_{n+1}^{\prime} (X^{\prime} X)^{-1} X_{n+1},$$

$$\widehat{\sigma}_{n+1} = \widehat{\sigma}_{u} \cdot \sqrt{X'_{n+1}(X'X)^{-1}X_{n+1}}.$$

С учетом этого доверительный интервал находится из выражения

$$\widehat{Y}_{n+1} - t_{\alpha/2} \widehat{\sigma}_{u} \sqrt{X_{n+1}'(X'X)^{-1} X_{n+1}} \leq M(Y_{n+1}^{*}) \leq \widehat{Y}_{n+1} + t_{\alpha/2} \widehat{\sigma}_{u} \sqrt{X_{n+1}'(X'X)^{-1} X_{n+1}}.$$

Для интервального прогноза стандартная ошибка прогноза находится из выражения

$$\widehat{\sigma}_{n+1(i)} = \widehat{\sigma}_{u} \cdot \sqrt{1 + X'_{n+1}(X'X)^{-1}X_{n+1}}.$$

Доверительный интервал рассчитывается по формуле

$$\widehat{Y}_{n+1} - t_{\alpha/2} \widehat{\sigma}_{u} \sqrt{1 + X_{n+1}' (X'X)^{-1} X_{n+1}} \leq Y_{n+1(i)}^{*} \leq \widehat{Y}_{n+1} + t_{\alpha/2} \widehat{\sigma}_{u} \sqrt{1 + X_{n+1}' (X'X)^{-1} X_{n+1}}.$$

Найдем прогнозное значение y и доверительные интервалы, соответственно, для точечного и интервального прогнозов.

Пусть

$$X_{n+1} = X_{13} = \begin{pmatrix} 1 \\ 1,2 \\ 9 \end{pmatrix},$$

тогда прогнозное значение $\widehat{y}_{\scriptscriptstyle 13}$ составит:

$$\hat{y}_{13} = -0.831946 + 4.742948 \cdot 1.2 + 0.174988 \cdot 9 = 6.434$$

Значение $\widehat{\sigma}_{u}$ равно

$$\widehat{\sigma}_u = \sqrt{\widehat{\sigma}_u^2} = \sqrt{0.068818} = 0.26233$$
,

отсюда

$$\widehat{\sigma}_{13} = 0,26233 \cdot \sqrt{(1 - 1,2 - 9) \cdot \begin{pmatrix} 2,474519 & 0,189775 & -0,240327 \\ 0,189775 & 0,745468 & -0,080098 \\ -0,240327 & -0,080098 & 0,029253 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1,2 \\ 9 \end{pmatrix}} = 0,26233 \cdot \sqrt{0,31694} = 0,26233 \cdot 0,56298 = 0,14769.$$

Для расчета доверительного интервала для точечного прогноза будем использовать табличное значение критерия Стьюдента с $\alpha=0.05$ и n-k=12-3=9: $t_{(\alpha/2,n-k)}=2.262$.

Итак, имеем:

$$6,434 - 2,262 \cdot 0,14769 \le M(y_{13}^*) \le 6,434 + 2,262 \cdot 0,14769$$
,
 $6,1 \le M(y_{13}^*) \le 6,769$.

Рассчитаем доверительный интервал для интервального прогноза:

$$\widehat{\sigma}_{13(i)} = 0,26233 \cdot \sqrt{1 + (1 \quad 1,2 \quad 9)} \cdot \begin{pmatrix} 2,474519 & 0,189775 & -0,240327 \\ 0,189775 & 0,745468 & -0,080098 \\ -0,240327 & -0,080098 & 0,029253 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1,2 \\ 9 \end{pmatrix} = 0,26233 \cdot \sqrt{1 + 0,3169} = 0,26233 \cdot 1,1476 = 0,301$$

Откуда имеем

$$6,434 - 2,262 \cdot 0,301 \le y_{13}^* \le 6,434 + 2,262 \cdot 0,301,$$

 $5,754 \le y_{13}^* \le 7,115.$

Таким образом, прогнозные значения среднего товарооборота попадают в более узкий интервал, чем отдельные значения данного показателя.

Процедура многошагового регрессионного анализа

Построение модели множественной регрессии может быть осуществлено поэтапно с использованием процедуры многошагового регрессионного анализа. В ее рамках имеется два направления:

- 1) по мере добавления в модель независимых переменных;
- 2) по мере исключения из модели многофакторной регрессии несущественно влияющих на зависимую переменную независимых показателей.

Первое направление разбивается на шаги:

- 1.1. Расчет коэффициентов парной корреляции r_{y/x_i} ;
- 1.2. Выбор среди рассчитанных коэффициентов r_{y/x_j} наибольшего (по абсолютной величине). Включение в модель соответствующего показателя;
- 1.3. Построение модели парной регрессии, оценка значимости ее параметров;
- 1.4. Последовательное дополнение модели независимыми переменными по мере уменьшения значений r_{y/x_j} . Построение моделей, оценка их значимости.

Процедура оканчивается тогда, когда в модель будут включены все значимые переменные.

Второе направление также разбивается на шаги:

- 1.1. Построение модели множественной регрессии с включением в нее всего набора независимых переменных;
- 1.2. Оценка значимости параметров модели по критерию Стьюдента. Исключение из модели наименее значимой переменной;
- 1.3. Пересчет параметров модели для оставшегося набора независимых переменных. Оценка значимости параметров и т.д.

Процедура оканчивается тогда, когда в модели останутся только существенно влияющие на y переменные.