ВВЕДЕНИЕ

<u>Что такое эконометрия? История развития дисциплины. Предмет и задача дисциплины.</u> Этапы ее реализации.

В повседневной жизни, в технических, технологических процессах, в производственно-хозяйственной деятельности между различными параметрами, показателями существует строго детерминированная связь, которая выражается в том, что точно можно рассчитать бюджет проекта, семьи, известна норма расхода сырья (которая не меняется) и выхода готовой продукции, можно определить, какие затраты необходимо осуществить для того чтобы построить предприятие, выпустить тот или иной вид продукции, определить, на сколько увеличится выпуск продукции при расширении производственных мощностей и т.д.

В этих случаях для установления взаимосвязей между показателями используются расчетные формулы, описывающие строгие соотношения между изучаемыми показателями, независимо от размеров изучаемых величин: так, точно известно, что расход стали на производство одного автомобиля в сто раз меньше расхода стали на сто автомашин и в тысячу раз меньше расхода на тысячу единиц и т.п.

С другой стороны, между изучаемыми показателями существуют и иного рода связи. Так, например, любой человек может сказать, что спрос на компакт-диски возрастет, если цена компакт-диска снизится (при прочих неизменных условиях), но немногие люди смогут действительно, оперируя числами, оценить, на сколько возрастет спрос на компакт-диски на каждую гривну снижения цены. Принимая то или иное решение в производственнохозяйственной деятельности, в сфере бизнеса, в торговле необходимо знать, будет ли прибыльным наращивание выпуска продукции, каким будет товарооборот в зависимости от уровня доходов населения, состава семьи, как изменится спрос на продукцию в случае снижения ее цены и т.п.

В отличие от детерминированного случая, взаимосвязь между показателями здесь проявляется и может быть выявлена только при изучении большой совокупности наблюдений. Чтобы определить направление изменения исследуемых величин, необходимо знание экономической теории и общих характеристик соотношений между их элементами, а для предсказания количест-

венной стороны изменений, необходимы данные наблюдений и способ оценки взаимосвязи.

Ответы на поставленные вопросы можно получить путем изучения соотношений между элементами экономической информации, отражающими интересующие нас стороны исследуемого процесса или явления.

Качество принимаемых решений зависит от того, насколько грамотно используется экономическая информация и насколько полно учитываются количественные взаимосвязи между элементами данной информации.

Эконометрия (или эконометрика) – область экономической науки, которая изучает методы количественного измерения взаимосвязей между экономическими показателями.

<u>Изучение эконометрии</u> во многом подобно процессу обучения управлению самолетом: вы в большей степени учитесь путем выполнения конкретных действий, расчетов, чем путем чтения об этом.

Задача курса «Эконометрия» – изучить методы оценки параметров эконометрической модели с целью количественного измерения взаимосвязи между исследуемыми процессами и явлениями.

Что такое эконометрия?

По отношению к эконометрии имеют место разные высказывания. Так, американский экономист Эдвард Лимер свое отношение к эконометрии выразил следующим образом: «Эконометрия слишком математизирована; вот почему мой лучший друг не специализируется в эконометрии». Или возьмем другую цитату того же автора: «Есть две вещи, процесс создания которых не хотелось бы наблюдать – производство сосисок и эконометрические исследования». Как видим, отношение к эконометрии у Эдварда Лимера явно негативное.

Более серьезные высказывания относительно эконометрии можно встретить у П. Самуэльсона, Т. Купманса и Дж. Стоуна («Отчет оценочной комиссии по эконометрии» 1954 г.):

1. «Эконометрия может быть определена как количественный анализ реального экономического процесса».

2. «... опыт показывает, что «экономические трюки» (английская игра слов: econometrics → "economy-tricks") обычно не что иное, как подтверждение предположений автора, выдвинутых до начала исследования».

Формирование эконометрии как самостоятельной дисциплины происходило в 20-30-е годы 20-го столетия. В основе ее лежали труды Г. Мура и Г. Шульца, опубликованные в 1914-1917 гг. Однако следует отметить, что еще в конце 19-го века были осуществлены попытки математической формализации экономико-статистических данных, нашедшие свое отражение в работах итальянского экономиста и социолога В. Парето, который использовал уравнение гиперболы для описания распределения доходов (1897 г.), а также в работах Р. Хукера и А. Чупрова по корреляционному анализу экономических процессов. Аналитико-статистические модели, разработанные в то время, представляли собой уравнения линейной регрессии, параметры которых оценивались методом наименьших квадратов. Рассматривались функции спроса и предложения в зависимости от размеров прибыли, объемов выпуска продукции, уровня цен, налогов, затрат труда, способов производства.

Термин «эконометрия» впервые был предложен в 1910 г. польским ученым Павлом Цьомпой в статье "Нариси економетрії і побудована на національній політекономії теорія бухгалтерського обліку"¹, а введен в научный оборот в 1926 г. норвежцем Р.Фришем.

В 1928 г. была опубликована работа Ч. Кобба и П. Дугласа, посвященная исследованию производственной функции. Модель производственной функции Кобба-Дугласа является примером классического подхода к экономическому анализу.

Уже в 30-е годы произошел переход от отдельных моделей в виде уравнений регрессии к комплексным моделям, состоящим из множества уравнений, которые описывали статистические связи производства, конечного личного и общественного потребления, цен, налогов, внешней торговли, спроса и предложения рабочей силы, накопления и износа капитала.

К числу авторов этих моделей относятся экономисты Я. Тинберген, Л. Клейн, Р. Стоун, Р. Фриш, Е. Шумпетер и некоторые другие. Они пытались

_

¹ Павло Цьомпа Нариси економетрії і побудована на національній політекономії теорія бухгалтерського обліку / Пер. з нім. Я.Гончарук, І.Конич, Г.Башнянин, І.Яремко. – Львів: Каменяр, 2001. – 223 с.

объединить экономическую теорию с математическими и статистическими методами.

Модели, предложенные данными учеными, повлекли за собой развитие математического аппарата и расширение области применения эконометрии. После второй мировой войны были построены комплексные эконометрические модели на макроуровне, в которых основное внимание уделялось спросу, финансовому состоянию, налогам, прибылям, ценам и т.п.

К числу наиболее часто используемых эконометрических моделей относятся:

- производственные функции;
- функции потребления различных групп населения;
- функции предпочтения потребителей;
- статические и динамические межотраслевые модели производства, распределения и потребления продукции;
- модели экономического равновесия.

Помимо экономических исследований, эконометрические методы успешно применяются в биологии, истории, социологии и некоторых других общественных и естественных науках, где необходимо оценивать взаимосвязи между большим количеством переменных.

Эконометрия в буквальном смысле означает **измерение экономики**. Следует иметь в виду, что не все измерения экономических показателей могут быть отнесены к эконометрии. Так, например, индексный метод, широко применяемый в экономической статистике, к эконометрическим не относится; методы линейного программирования, которые также применимы к моделированию и анализу экономических процессов и явлений, также не имеют отношения к изучаемой дисциплине.

Эконометрия изучает методы оценивания параметров моделей, которые характеризуют количественные взаимосвязи между экономическими показателями, а также рассматривает основные направления применения этих моделей в экономических исследованиях.

<u>Классическое определение эконометрии</u> звучит следующим образом – это наука, которая изучает количественные закономерности и взаимосвязи экономических объектов и процессов с помощью математико-статистических методов и моделей.

<u>Определение предмета</u> эконометрии в разных источниках трактуется по-разному. Так, можно выделить, по крайней мере, пять подходов к определению предмета дисциплины, которые характерны для зарубежных авторов:

- 1. Л. Клейн определяет эконометрию как науку, которая изучает измерение связей в соответствующем экономическом анализе.
- 2. Г. Тинтнер отождествляет эконометрию с математической статистикой.
- 3. Г. Хансен подразумевает под эконометрией применение математических и статистических методов в экономике.

Другие определения:

- 4. Эконометрия синтез экономической теории и математики.
- 5. Эконометрия экономическая теория, математика и статистика.

Последнее определение предмета эконометрии ближе всего стоит к трактовке его основателями дисциплины – Р. Фришем, Е. Шумпетером и Я. Тинбергеном, которые, как уже отмечалось, пытались объединить экономическую теорию с математическими и статистическими методами.

Эконометрия является одной из основных дисциплин в подготовке специалистов экономического профиля. Это – синтетическая дисциплина, вобравшая в себя элементы экономической теории, включая микро- и макро- экономику, математической экономики, экономической и математической статистики. Для изучения эконометрии важно знание основ матричной алгебры, дифференциального исчисления, методов математической статистики, экономических понятий и категорий.

Развитие эконометрии осуществляется по двум направлениям: разработка новых методов оценивания параметров моделей с учетом особенностей экономической информации; расширение экономических исследований на основе эконометрических методов.

Задачей эконометрического исследования является оценка параметров и проверка значимости эконометрической модели.

Реализация данного процесса распадается на ряд этапов:

- 1. Формулировка теории или гипотезы.
- 2. Разработка эконометрической модели для проверки этой теории или гипотезы.
- 3. Сбор и подготовка экономической информации.
- 4. Оценка параметров выбранной модели.
- 5. Проверка модели на достоверность (верификация). Очень важной составной частью данного этапа является оценка дисперсии остатков (погрешностей) модели. Эта оценка дает возможность судить о качестве модели с точки зрения ее использования в экономическом анализе и прогнозировании.
- 6. Использование модели для анализа.
- 7. Прогнозирование с помощью модели.

<u>Понятие модели. Классификация моделей. Особенности построения</u> эконометрических моделей.

Современные методы управления экономическими системами и процессами базируются на широком использовании математических методов и вычислительной техники.

Математическое моделирование является методом изучения процесса или явления (в том числе экономического) путем построения математической модели данного процесса с последующим ее использованием для получения решения (оптимального с точки зрения выбранного критерия), анализа полученного результата и выработки рекомендаций.

Математическая модель экономического процесса, явления – это абстрактная запись основных его закономерностей с помощью математических формул и соотношений.

Математическая модель объекта (процесса, явления) содержит три группы элементов

- 1. характеристику объекта, который необходимо определить неизвестные величины (вектор Y);
- 2. характеристики внешних по отношению к объекту условий, которые изменяются (вектор X);
- 3. совокупность внутренних параметров объекта (матрица А).

X и A рассматриваются как экзогенные параметры (определяемые вне модели). Y – эндогенный параметр, значения которого определяются из модели.

Математическая модель – это своего рода преобразователь внешних условий функционирования объекта X (входа) в характеристики объекта Y (выходы).

Математические модели можно разделить на две группы: <u>структурные</u> и функциональные.

<u>Структурные</u> модели описывают внутреннюю организацию объекта, его составные части, внутренние параметры, связь между «входом» и «выходом». Различают три вида структурных моделей:

- 1. $Y_j = f_j(A, X); (j \in J);$
- 2. $\Psi_i(A, X, Y) = 0; (i \in I);$
- 3. имитационные модели.

В моделях первого вида все неизвестные величины представлены в виде явных функций от внешних условий и внутренних параметров объекта.

В моделях второго вида неизвестные определяются однозначно из системы I уравнений, неравенств и т.д.

В имитационных моделях неизвестные величины также определяются одновременно с входящими параметрами, однако конкретный вид соотношений неизвестен. Для реализации таких моделей используются методы теории случайных процессов, теории игр и статистических решений, теории ав-

томатов и т.п. Для этих целей используется, как правило, вычислительная техника.

Основная идея функциональных моделей – изучение сущности объекта через наиболее существенные ее проявления: деятельность, функционирование, поведение. Внутренняя структура объекта при этом не изучается, а поэтому информация о его структуре не используется. Функциональная модель описывает поведение объекта так, что, задавая значения «входа» X, можно получить значения «выхода» Y (без участия информации о параметрах):

$$Y = P(X)$$
.

Построить функциональную модель – означает найти оператор A, который связывает X и Y.

Различия между структурными и функциональными моделями имеют относительный характер. Изучение структурных моделей дает одновременно ценную информацию о поведении объекта. С другой стороны, при изучении функциональных моделей необходимо сформулировать гипотезы относительно внутренней структуры объекта.

Эконометрические модели относятся к функциональным моделям. Эконометрическая модель – это функция или система функций, которые количественно описывают связь между входными показателями экономической системы (X) и результативным показателем (Y). В общем виде эконометрическую модель можно записать так:

$$Y = f(X, u),$$

где X – входные экономические показатели; u – случайная или стохастическая составляющая.

Показатели X наиболее часто бывают детерминированными. Аддитивная составляющая u является случайной переменной. С учетом этого переменная Y, зависящая от u, также является стохастической. Отсюда вытекает вывод: эконометрическая модель является стохастической моделью.

Построение и исследование эконометрических моделей имеет ряд особенностей в силу своей стохастической природы. Они количественно описывают корреляционно-регрессионную связь между экономическими величинами. Это означает, что для построения эконометрической модели необходимо:

- 1. иметь достаточно большую совокупность наблюдений;
- 2. обеспечить однородность совокупности наблюдений;

3. обеспечить точность входных данных.

Формирование совокупности наблюдений

Совокупность наблюдений - основа эконометрического моделирования. Необходимо различать <u>единицу наблюдения</u> - источник данных и <u>единицу</u> <u>совокупности</u> - носителя признаков, которые подлежат наблюдению.

Совокупность наблюдений представляют в виде упорядоченного набора данных с параметрами n, m, T,

- где n число единиц совокупности;
 - m число признаков, которые описывают каждую единицу;
- T промежуток времени, за который изучается признак определенной единицы совокупности.

В качестве единицы совокупности может выступать определенный экономический объект: цех, предприятие, агрегат и т.п.

Выборка может формироваться тремя способами:

- во временном разрезе (динамическая выборка);
- в пространственном разрезе (статическая выборка);
- в пространственно-временном.

Понятие однородности наблюдений

Данное понятие охватывает <u>качественную</u> и <u>количественную</u> <u>однород</u>ность.

Под первой подразумевается однотипность экономических объектов, их одинаковое качество и определенное назначение; под второй - однородность группы единиц совокупности, которая определяется на основе количественных показателей (например, коэффициента вариации, дисперсии и т.п.).

При формировании массива наблюдений необходимо убедиться, что данные будут иметь:

- одинаковую степень агрегирования;
- однородную структуру единиц совокупности;
- одни и те же методы расчета показателей во времени;
- одинаковую периодичность учета отдельных изменений;

сопоставимые цены и одинаковые другие внешние экономические условия.

Точность входных данных

Выводы, которые могут быть сделаны на основе эконометрического моделирования, целиком зависят от качества входных данных.

При эконометрическом моделировании очень остро стоит вопрос о точности (погрешностях, ошибках) экономических показателей.

Погрешности могут возникать при формировании алгоритма расчета показателей, при округлении, повторном учете тех или иных показателей и т.п.

Все ошибки делят на систематические и случайные.

<u>Систематические</u> либо имеют постоянную величину, либо изменяются, подчиняясь определенной функциональной зависимости. Они всегда имеют одинаковую направленность и могут быть существенными по величине.

<u>Случайные</u> обусловлены влиянием случайных факторов при формировании показателей. При повторных расчетах экономических показателей эти ошибки могут взаимно погашаться.

Однако это не означает, что экономические последствия этих ошибок имеют такие же особенности. Любые ошибки могут привести к потерям, поэтому при формировании совокупности наблюдений следует обращать внимание на возможность возникновения ошибок.

Выбор переменных и структура связи

При построении эконометрической модели необходимо владеть профессиональными знаниями об объекте исследования. Предварительно необходимо решить следующие вопросы:

- определить набор переменных, которые описывают процесс функционирования исследуемых объектов;
- проанализировать взаимосвязи между отдельными переменными;
- выбрать рациональную форму эконометрической модели.

Первая задача решается на этапе формулировки цели исследования. Определение набора независимых переменных осуществляется путем формирования начальной гипотезы. Круг существенно влияющих переменных может как расширяться, так и сужаться. Данный процесс бывает многошаговым.

Постановка регрессионной проблемы

Наиболее часто используемым методом для количественной оценки взаимосвязей в эконометрии является корреляционно-регрессионный анализ. Он используется при решении широкого круга задач в различных областях человеческой деятельности.

Суть метода корреляционно-регрессионного анализа заключается в определении оценок количественного влияния показателей на исследуемую величину и построении на этой основе строгой зависимости между ними, которая в общем виде записывается в виде некоторой функции:

$$y = f(x_1, x_2, ..., x_n),$$

где y – исследуемая величина, $x_1, x_2, ..., x_n$ – показатели, влияющие на исследуемую величину.

Постановка регрессионной проблемы формулируется следующим образом:

Имеется некоторый (экономический) объект исследования. Данный объект представлен наблюдаемыми величинами $y, x_1, x_2, ..., x_n$. Между этими величинами имеется объективная связь. На основе знаний об объекте исследования точно известно, что наблюдаемая величина y зависит от наблюдаемых величин $x_1, x_2, ..., x_n$. Величина y называется зависимой (или регрессантом), а показатели $x_1, x_2, ..., x_n$ – независимыми (или регрессорами). Необходимо определить вид функции, которая связывает y и $x_1, x_2, ..., x_n$.

Наиболее часто используется линейная функция вида

$$y = a_0 + a_1 x_1 + a_2 x_2 + \dots + a_n x_n$$
,

где a_0 – свободный член уравнения, определяющий точку пересечения регрессионной гиперплоскости (для случая парной регрессии – прямой) с осью Oy; $a_1,a_2,...,a_n$ – коэффициенты уравнения (коэффициенты регрессии).

Возможны и другие формы зависимостей, например

$$y=a_0e^{a_1x_1+a_2x_2+...+a_nx_n}-\text{экспоненциальная},$$

$$y=a_0x_1^{a_1}x_2^{a_2}...x_n^{a_n}-\text{степенная},$$

$$y=a_0+\frac{a_1}{x_1}+\frac{a_2}{x_2}+...+\frac{a_n}{x_n}-\text{гиперболическая},$$

$$y=a_0+a_1x_1^2+a_2x_2^2+...+a_nx_n^2-\text{квадратическая}$$

и другие.

Каждая из рассматриваемых функций может быть сведена к линейной либо путем логарифмирования

$$\ln y = \ln a_0 + a_1 x_1 + a_2 x_2 + \dots + a_n x_n,$$

$$\ln y = \ln a_0 + a_1 \ln x_1 + a_2 \ln x_2 + \dots + a_n \ln x_n,$$

либо путем замены переменной

$$\frac{1}{x_i} = z_i, \quad (i = \overline{1, n}) \qquad \Rightarrow \qquad y = a_0 + a_1 z_1 + a_2 z_2 + \dots + a_n z_n,$$

$$x_i^2 = t_i, \quad (i = \overline{1, n}) \qquad \Rightarrow \qquad y = a_0 + a_1 t_1 + a_2 t_2 + \dots + a_n t_n.$$

В реальной ситуации наблюдаемые величины отклоняются от данной функциональной формы связи, поэтому в регрессионную модель включается стохастическая составляющая u

$$y = a_0 + a_1 x_1 + a_2 x_2 + \dots + a_n x_n + u$$
.

Данная величина может принимать как положительные, так и отрицательные значения. Ее часто называют отклонением, ошибкой, остатком, возмущением и т.п.

Величина отклонения u должна присутствовать в уравнении по нескольким причинам:

- 1. Множество показателей, незначительно влияющих на y, не включаются в уравнение (например, потому что отсутствуют данные наблюдений);
- 2. Практически невозможно избежать некоторого вида ошибок измерений, по крайней мере, у одной переменной уравнения;

- 3. Теоретическое уравнение регрессии может отличаться от построенной зависимости (так, например, действительная взаимосвязь может быть нелинейной, в то время как построена линейная зависимость между переменными);
- 4. Помимо рассматриваемых, на исследуемую величину могут оказывать влияние и случайные факторы;
- 5. Все попытки обобщить человеческое поведение должны учитывать некоторую неопределенность, чисто случайную вариацию изучаемых показателей.

Для того чтобы более четко представить себе суть случайной ошибки u, рассмотрим функцию потребления как функцию от получаемого дохода. Так, потребление в определенном году может быть менее того уровня, который должен иметь место в связи с неопределенностью будущего состояния экономики, которая влияет на рост сбережений населения и снижение потребления по сравнению с его уровнем, если бы неопределенность отсутствовала. Так как неопределенность трудно измерить, то в уравнении не может присутствовать переменная, которая определяет неопределенность поведения потребителя. И т.д.

Итак, случайная ошибка является величиной, которая добавляется в уравнение регрессии, чтобы отразить все изменения переменной y, которые не могут быть объяснены изменениями переменных x_i $(i=\overline{1,n})$.

Значения наблюдаемых величин $y, x_1, x_2, ..., x_n$ при оценке параметров модели $a_0, a_1, a_2, ..., a_n, u$ считаются наперед заданными.

В классической линейной эконометрической модели переменная u интерпретируется как случайная переменная, которая имеет нормальный закон распределения с математическим ожиданием, равным нулю и постоянной дисперсией σ_u^2 .

Основной целью регрессионного анализа является получение теоретически обоснованного и статистически надежного точечного и интервального прогнозов зависимой переменной y.