Степени свободы для сумм квадратов

• Число степеней свободы некоторой величины — это разность между числом ее исследований (наблюдений) и числом констант, которые установлены (найдены) в результате этих исследований, независимо друг от друга

Применительно к SST, SSR и SSE

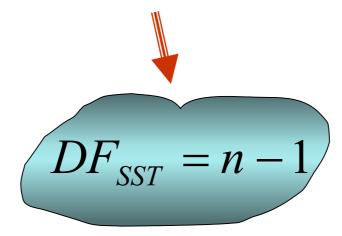
Степень свободы — число, которое показывает, сколько независимых элементов информации, полученных из элементов y_1, y_2, \dots, y_n , необходимо для расчета данной суммы квадратов

SST

$$y_1 - \overline{y}$$
, $y_2 - \overline{y}$, ..., $y_n - \overline{y}$

$$\sum_{i=1}^{n} (y_i - \overline{y}) = 0 \qquad \sum_{i=1}^{n-1} (y_i - \overline{y}) \neq 0$$

n-1 разность независима

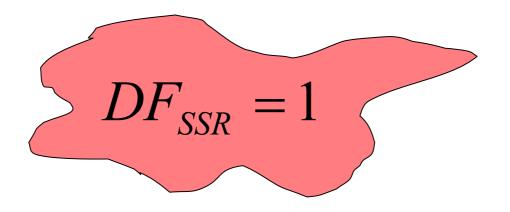


SSR

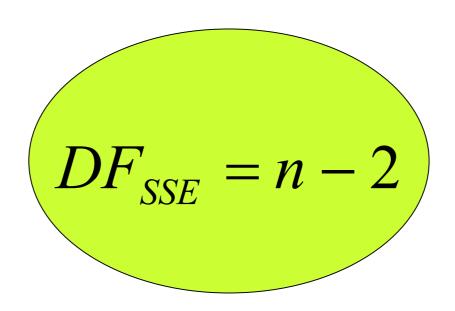
$$\widehat{a}_{\scriptscriptstyle 1}$$

$$\widehat{y}_i - \overline{y} = \widehat{a}_0 + \widehat{a}_1 x_i - \widehat{a}_0 - \widehat{a}_1 \overline{x} = \widehat{a}_1 (x_i - \overline{x})$$

$$\sum_{i=1}^{n} (\widehat{y}_{i} - \overline{y})^{2} = \widehat{a}_{1}^{2} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$



SSE



Определение

• Средний квадрат – сумма квадратов, поделенная на соответствующее число степеней свободы

Средний квадрат ошибок

$$MSE = \frac{\sum_{i=1}^{n} (y_i - \widehat{y}_i)^2}{n-2}$$

Средний квадрат, объясняющий регрессию

$$MSR = \frac{\sum_{i=1}^{n} (\widehat{y}_i - \overline{y})^2}{1} = SSR$$

•Проверка адекватности модели и ее параметров

•Проверка адекватности модели по *F*-критерию Фишера

$$F = \frac{MSR}{MSE}$$

$$v_1 = 1 \qquad v_2 = n - 2$$

$$\hat{a}_1 = 0$$

$$\hat{y}_{i} = \hat{a}_{0} + \hat{a}_{1}x_{i} = \bar{y} - \hat{a}_{1}\bar{x} + \hat{a}_{1}x_{i} = \bar{y} + \hat{a}_{1}(x_{i} - \bar{x}) = \bar{y}$$

Гипотеза

$$H_0: \widehat{a}_1 = 0$$

Этапы проверки

1. Рассчитываем величину F-критерия

$$F_{pacy.} = \frac{MSR}{MSE}$$

2. Задаем уровень значимости СС

3. Находим табличное (критическое)

значение
$$F$$
-критерия $\left(F_{(1,n-2,\alpha)}\right)$ с $v_1=1$

и $v_2 = n - 2$ степенями свободы и уровнем

значимости О

4. Если $F_{pacy} > F_{(1,n-2,\alpha)}$, то гипотеза

$$H_0: \widehat{a}_1 = 0$$

отвергается, если , $F_{pac^{q}} \leq F_{(1,n-2,\alpha)}$ то гипотеза принимается

Рассчитаем F-статистику Фишера

$$MSR = \frac{\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2}{1} = \frac{274,7935}{1} = 274,7935$$

$$MSE = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n-2} = \frac{10,70652}{8-2} = 1,78442$$

$$F_{pacu.} = \frac{MSR}{MSE} = \frac{274,7935}{1,78442} = 153,996$$

Для

$$v_1 = 1$$
 $v_2 = n - 2$

$$\alpha = 0.05$$
 $F_{(1,6,0.05)} = 5.99$

$$F_{pacy.} = 153,996 > F_{(1,6,0.05)} = 5,99$$

Проверка гипотезы о значимости коэффициента корреляции

Гипотеза

$$H_0: r_{yx} = 0$$

Используем критерий Стьюдента

$$t_{pacy.} = r_{yx} \cdot \sqrt{\frac{n-2}{1-r_{yx}^2}}$$

ИЛИ

$$t_{pacy.} = r_{yx} \cdot \sqrt{\frac{n-2}{1-R^2}}$$

$$\nu = n-2$$
 - число степеней свободы

Для заданных v и α находим табличное значение $t_{(v,\alpha)}$

Если
$$\left|t_{pacu.}\right| > t_{(v,\alpha)}$$
 , то гипотеза $H_0: r_{yx} = 0$ отвергается, если $\left|t_{pacu.}\right| \leq t_{(v,\alpha)}$ - то принимается

Рассчитаем *t*-статистику Стьюдента

$$t_{pacu.} = r_{yx} \cdot \sqrt{\frac{n-2}{1-r_{yx}^2}} = 0,981 \cdot \sqrt{\frac{8-2}{1-0,9625}} = 12,41$$

При
$$\alpha$$
=0,05 и v = n -2= 8 -2= 6

$$t_{\text{magn.}} = t_{(6,0.05)} = 1,943$$

Так как

$$t_{pacy.} = 12,41 > t_{(6,0.05)} = 1,943,$$

то коэффициент корреляции значим

• Критерии оценки качества линейной модели

1. Средняя ошибка прогноза

$$ME = \overline{u} = \frac{1}{n} \sum_{i=1}^{n} u_i$$

$$ME \rightarrow 0$$
 при $n \rightarrow \infty$

2. Дисперсия и стандартное отклонение ошибок

$$var(u) = \frac{1}{n} \sum_{i=1}^{n} (u_i - \overline{u})^2 = \sigma_u^2$$

$$\sigma = \sqrt{\operatorname{var}(u)} = \sqrt{\frac{1}{n}} \sum_{i=1}^{n} (u_i - \overline{u})^2$$

3. Среднее абсолютное отклонение

$$MAD(u) = \frac{1}{n} \sum_{i=1}^{n} |u_i - \overline{u}|$$

4. Средний квадрат ошибки

$$MSE(u) = \frac{1}{n} \sum_{i=1}^{n} u_i^2$$

(сумма квадратов ошибок)

$$SSE = \sum_{i=1}^{n} u_i^2$$

5. Средняя абсолютная процентная ошибка

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \frac{|u_i|}{y_i} 100\%$$

6. Средняя процентная ошибка аппроксимации

$$MPE = \frac{1}{n} \sum_{i=1}^{n} \frac{u_i}{y_i} 100\%$$

7. Средняя абсолютная ошибка

$$MAE(u) = \frac{1}{n} \sum_{i=1}^{n} |u_i|$$

Рассчитаем среднюю процентную ошибку аппроксимации

$$MPE = \frac{1}{n} \sum_{i=1}^{n} \frac{u_i}{y_i} \cdot 100\% =$$

$$=\frac{-0.28386}{8}\cdot100\%=-3.55\%$$

Несмещенная оценка истинного значения σ_u^2 :

а) для парной зависимости

$$\widehat{\sigma}_{u}^{2} = \frac{\sum_{i=1}^{n} u_{i}^{2}}{n-2}$$

б) для многофакторной модели

$$\widehat{\sigma}_{u}^{2} = \frac{\sum_{i=1}^{n} u_{i}^{2}}{n-k}$$

$$n-2$$
 и $n-k$ – число степеней свободы

• Условия применения метода наименьших квадратов

$$1. M(u_i) = 0$$

Факторы, не включенные в модель, не влияют систематически на математическое ожидание

2. Гомоскедастичность

$$\operatorname{var}(u_i) = \sigma_u^2, i = \overline{1,n}$$

3. Случайная величина u распределена по нормальному закону

$$u \sim N(0,\sigma_u^2)$$

4. Между случайными величинами \mathcal{U} отсутствует автокорреляция

$$cov(u_i, u_j) = M\{[u_i - M(u_i)] \cdot [u_j - M(u_j)]\} =$$

$$=M(u_iu_j)=0, i\neq j$$

5. Значения независимых переменных X_i

не зависят от значений случайных

величин u_i

$$cov(u_i, x_i) = M\{[u_i - M(u_i)] \cdot [x_i - M(x_i)]\} =$$

$$=M\{u_{i}[x_{i}-M(x_{i})]\}=$$

$$= M(u_i x_i) - M(u_i) \cdot M(x_i) = M(u_i x_i) = 0$$

$$M(u_i) = 0$$
 $M(x_i) = const$

6. Независимые переменные не должны быть мультиколлинеарными

7. Регрессионная модель построена (специфицирована) правильно: правильно подобрана линия регрессии, в нее включены только существенно влияющие переменные, модель адекватна экономическому процессу

8. Количество наблюдений больше числа независимых переменных (perpeccopos) (n > k)

9. Регрессоры – детерминированные величины

10. Набор переменных X не содержит ошибок наблюдений

11.Набор переменных X содержит все существенно влияющие на регрессант факторы

12. Коэффициенты регрессии – детерминированные величины, неизменные во времени и пространстве

• <u>Распределение независимой</u> <u>переменной</u> у

Единственный источник изменения *у* – случайная величина *и*

распределение переменной y зависит от распределения случайной величины u, т.е.

является нормальным

$$M(y_i) = M(a_0 + a_1x_i + u_i) = M(a_0 + a_1x_i) + M(u_i)$$

$$M(u_i) = 0$$

 a_0, a_1 - constants

 X_i — детерминированная величина

$$M(y_i) = M(a_0 + a_1 x_i) = a_0 + a_1 x_i$$

$$D(y_i) = M[y_i - M(y_i)]^2 = \sigma_u^2$$

Здесь и далее в расчетах используется

несмещенная оценка дисперсии!

$$\widehat{\sigma}_{u}^{2}$$