TEMA 2

Построение обобщенной регрессионной модели

• Расчет параметров модели в матричной форме

Этапы построения многофакторной модели

- 1. постановка задачи;
- 2. спецификация модели;
- 3. формирование массива информации;
- 4. оценка параметров модели методом 1МНК;
- 5. проверка модели и ее параметров на адекватность;
- 6. анализ полученных результатов, прогнозирование

Ошибки спецификации модели

- не включение в модель существенно влияющего фактора (факторов);
- включение в модель несущественно влияющего фактора (факторов);
- использование видов зависимостей, не соответствующих истинной форме связи.

Обозначения

 Y – вектор-столбец наблюдений зависимой переменной

 X – матрица наблюдений независимых переменных

А – вектор-столбец оцениваемых параметров

и – вектор-столбец остатков

Исходя из

$$Y = AX + u$$

И

$$\widehat{Y} = X\widehat{A}$$

$$u = Y - XA$$

Сумма квадратов остатков

$$\sum u^2 = u'u = (Y - X\widehat{A})(Y - X\widehat{A}) =$$

$$= Y'Y - 2\widehat{A}'X'Y + \widehat{A}X'X\widehat{A}$$

$$\frac{\partial (u'u)}{\partial \widehat{A}} = -2X'Y + 2X'X\widehat{A} = 0$$

$$\widehat{A} = (X^{\prime}X)^{-1}X^{\prime}Y$$

Пример

Необходимо определить, как
 товарооборот сети магазинов зависит от
 их торговой площади и среднедневной
 интенсивности потока покупателей

Магазин	Товарооборот, сотен тыс. грн.	Торговая площадь, тыс. м ²	Среднедневная интенсивность потока покупателей, тыс. чел.
1	2,93	0,31	10,24
2	5,27	0,98	7,51
3	6,85	1,21	10,81
4	7,01	1,29	9,89
5	7,02	1,12	13,72
6	8,35	1,49	13,92
7	4,33	0,78	8,54
8	5,77	0,94	12,36
9	7,68	1,29	12,27
10	3,16	0,48	11,01
11	1,52	0,24	8,25
12	3,15	0,55	9,31

$$X = \begin{pmatrix} 1 & 0,31 & 10,24 \\ 1 & 0,98 & 7,51 \\ 1 & 1,21 & 10,81 \\ 1 & 1,29 & 9,89 \\ 1 & 1,12 & 13,72 \\ 1 & 0,78 & 8,54 \\ 1 & 0,94 & 12,36 \\ 1 & 1,29 & 12,27 \\ 1 & 0,48 & 11,01 \\ 1 & 0,26 & 8,25 \\ 1 & 0,55 & 9,31 \end{pmatrix} \qquad Y = \begin{pmatrix} 2,93 \\ 5,27 \\ 6,85 \\ 7,01 \\ 7,02 \\ 8,35 \\ 4,33 \\ 5,77 \\ 7,68 \\ 3,16 \\ 1,52 \\ 3,15 \end{pmatrix}$$

Рассчитаем произведение матриц X'X

$$X'X = \begin{pmatrix} 12 & 10,68 & 127,83 \\ 10,68 & 11,4058 & 118,973 \\ 127,83 & 118,973 & 1410,14 \end{pmatrix}$$

Найдем обратную матрицу

$$(X'X)^{-1} = \begin{pmatrix} 2,47452 & 0,18978 & -0,2403 \\ 0,18978 & 0,74547 & -0,0801 \\ -0,2403 & -0,0801 & 0,02925 \end{pmatrix}$$

Рассчитаем X'Y

$$X'Y = \begin{pmatrix} 63,04\\ 66,0611\\ 704,692 \end{pmatrix}$$

Найдем \widehat{A}

$$\widehat{A} = \begin{pmatrix} -0,8319 \\ 4,74295 \\ 0,17499 \end{pmatrix}$$

Регрессионная модель

$$\hat{y} = -0.8319 + 4.74295x_1 + 0.17499x_2$$

Интерпретация модели

• при изменении размера торговой площади на одну тыс. м², при прочих равных условиях, товарооборот увеличится на 4,74 сотен тыс. грн.

• при увеличении среднедневного потока покупателей на одну тыс. чел., при прочих равных условиях, товарооборот возрастет на 0,175 сотен тыс. грн.

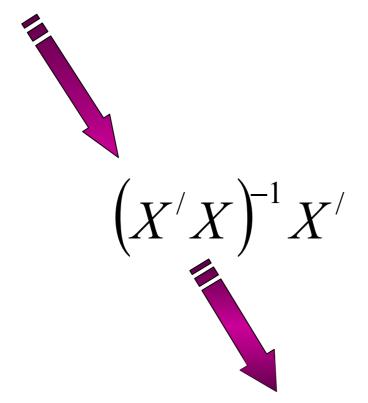
• Свойства оценок параметров

- 1. несмещенность;
- 2. обоснованность;
- 3. эффективность;
- 4. инвариантность.

• Оценки параметров модели будут несмещенными, если математическое ожидание их выборочных значений, найденных при многократном повторении выборки, не отличается от истинного значения

$$M(\widehat{A}) = A$$

$$Y = XA + u$$



$$(X'X)^{-1}X'Y = (X'X)^{-1}X'XA + (X'X)^{-1}X'u$$

Так как,
$$(X'X)^{-1}X'X = E$$
 то $M[(X'X)^{-1}X'Y] = M[A + (X'X)^{-1}X'u]$

$$M\left[\widehat{A}\right] = A + \left(X^{\prime}X\right)^{-1}X^{\prime}M\left(u\right)$$

Учитывая

Смещение

$$Q = M(\widehat{A}) - A$$

Проверка смещенности

$$\frac{\widehat{\sigma}_{a_i}}{|\widehat{a}_i|} > 10\% \quad ????$$

• Выборочная оценка A называется обоснованной, если для любого сколь угодно малого числа $\varepsilon > 0$ выполняется соотношение

$$\lim_{n\to\infty} P\left\{ \left| \widehat{A} - A \right| < \varepsilon \right\} = 1$$

• Выборочные оценки вектора A будут только тогда эффективными, когда их дисперсии будут наименьшими

Теорема Гаусса-Маркова

• функция оценивания по методу 1МНК покомпонентно минимизирует дисперсию всех линейных несмещенных функций вектора оценок \widehat{A}

$$\sigma_{\widehat{A}}^2 \leq \sigma_{\overline{A}}^2$$

 $\sigma_{\widehat{A}}^2$ — дисперсия оценок \widehat{A} , определенная методом 1МНК, $\sigma_{\widehat{A}}^2$ — дисперсия оценок \overline{A} , определенных другими способами

• Функция оценивания 1МНК в классической линейной модели является лучшей линейно несмещенной функцией оценивания

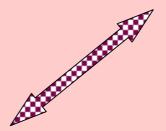
(c англ. BLUE – Best Linear Unbiased

Estimator)

• Оценка A параметров A называется инвариантной, если для произвольно заданной функции g оценка параметров функции g(A) представляется в виде

Коэффициент множественной детерминации

Коэффициент множественной корреляции



Среднеквадратическое отклонение

• Коэффициенты корреляции, детерминации, эластичности

$$r_{y/x_j} = \frac{\text{cov}(x_j, y)}{\sqrt{\text{var}(x_j)\text{var}(y)}}$$

1. Нормировка

$$y_i^* = \frac{y_i - \overline{y}}{\sigma_y}$$

$$x_{ij}^* = \frac{x_{ij} - x_j}{\sigma_{x_j}}$$

2. Расчет коэффициентов парной корреляции

$$r_{y/x_j} = \frac{1}{n} (Y^*)^j X_j^*$$

$$r_{x_l/x_j} = \frac{1}{n} (X_l^*)^l X_j^*$$

Пример

Наблюдение	\mathcal{Y}^*	x_1^*	x_2^*
1	-1,100378	-1,457381	-0,205323
2	0,007894	0,226145	-1,564188
3	0,756214	0,804073	0,078396
4	0,831994	1,005091	-0,379536
5	0,836730	0,577927	1,526856
6	1,466645	1,507636	1,626407
7	-0,437309	-0,276400	-1,051502
8	0,244704	0,125636	0,849913
9	1,149319	1,005091	0,805115
10	-0,991445	-1,030218	0,177947
11	-1,768183	-1,633272	-1,195851
12	-0,996182	-0,854327	-0,668233

$$r_{y/x_1} = \frac{1}{12} \cdot (-1,1003 \quad 0,0079 \quad \cdots \quad -0,9962) \cdot \begin{pmatrix} -1,4574 \\ 0,2261 \\ \vdots \\ -0,8543 \end{pmatrix} = 0,9843$$

$$r_{y/x_2} = \frac{1}{12} \left(-1,1003 \quad 0,0079 \quad \cdots \quad -0,9962 \right) \cdot \begin{pmatrix} -0,2053 \\ -1,5642 \\ \vdots \\ -0,6682 \end{pmatrix} = 0,65141$$

$$r_{x_1/x_2} = \frac{1}{12} \cdot (-1,4574 \quad 0,2261 \quad \cdots \quad -0,8543) \cdot \begin{pmatrix} -0,2053 \\ -1,5642 \\ \vdots \\ -0,6682 \end{pmatrix} = 0,5424$$

Матрица коэффициентов парной корреляции

$$r = \begin{pmatrix} 1 & 0,9843 & 0,65141 \\ 0,9843 & 1 & 0,5424 \\ 0,65141 & 0,5424 & 1 \end{pmatrix}$$

Коэффициент множественной детерминации

$$R^{2} = \frac{\sum_{i=1}^{n} (\widehat{y}_{i} - \overline{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}} = \frac{\sum_{i=1}^{n} (\widehat{Y} - \overline{Y})^{2}}{\sum_{i=1}^{n} (Y - \overline{Y})^{2}} = \frac{\widehat{A}' X' Y}{Y' Y}$$

или

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \widehat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}} = 1 - \frac{\sum_{i=1}^{n} (Y - \widehat{Y})^{2}}{\sum_{i=1}^{n} (Y - \overline{Y})^{2}} = 1 - \frac{u'u}{Y'Y}$$

Скорректированный коэффициент множественной детерминации (с учетом числа степеней свободы)

$$\overline{R}^2 = 1 - \left(1 - R^2\right) \cdot \frac{n - 1}{n - k}$$

Коэффициент множественной корреляции

$$R = \sqrt{R^2}$$

 $R \geq 0$

Магазин	y	$ y-\overline{y} $	$(y-\overline{y})^2$	$\widehat{\mathcal{Y}}$	$ \widehat{y} - \overline{y} $	$\left (\widehat{y} - \overline{y})^2 \right $	$(y-\bar{y})(\bar{y}-\bar{y})$	$ y-\widehat{y} $	$ (y-\widehat{y}) $
1	2,93	-2,32	5,40	2,4302	-2,82	7,97	6,55896	0,50	0,2498
2	5,27	0,02	0,00	5,1303	-0,12	0,02	-0,00205	0,14	0,0195
3	6,85	1,60	2,55	6,7986	1,55	2,39	2,46734	0,05	0,0026
4	7,01	1,76	3,09	7,017	1,76	3,11	3,09833	-0,01	0,0001
5	7,02	1,77	3,12	6,8809	1,63	2,65	2,87553	0,14	0,0193
6	8,35	3,10	9,59	8,6709	3,42	11,7	10,5830	-0,32	0,1030
7	4,33	-0,92	0,85	4,3619	-0,89	0,79	0,82303	-0,03	0,0010
8	5,77	0,52	0,27	5,7893	0,54	0,29	0,27690	-0,02	0,0004
9	7,68	2,43	5,89	7,4336	2,18	4,75	5,29068	0,25	0,0607
10	3,16	-2,09	4,38	3,3713	-1,88	3,54	3,93974	-0,21	0,0446
11	1,52	-3,73	13,94	1,750	-3,50	12,3	13,0790	-0,23	0,0529
12	3,15	-2,10	4,42	3,4058	-1,85	3,41	3,88594	-0,26	0,0654
Сумма			53,50			52,9	52,8765		0,6194

$$R^2 = 0.98842$$

$$\overline{R}^2 = 0,98585$$

$$R = \sqrt{0.98842} = 0.99419314$$

Вариация включенных в модель факторов на 98,585% объясняет вариацию зависимой переменной

Коэффициент эластичности

$$E_{y/x_j} = \frac{\partial y}{\partial x_j} \cdot \frac{\bar{x}_j}{\bar{y}}$$

Средние

$$\overline{y} = 5,25333$$
 $\overline{x}_1 = 0,89$

$$\bar{x}_2 = 10,6525$$

Коэффициенты эластичности

$$E_{y/x_1} = \frac{\partial y}{\partial x_1} \cdot \frac{\overline{x}_1}{\overline{y}} = \hat{a}_1 \cdot \frac{\overline{x}_1}{\overline{y}} =$$

$$= 4,74295 \cdot \frac{0,89}{5,25333} = 0,80353$$

$$E_{y/x_2} = \frac{\partial y}{\partial x_2} \cdot \frac{\overline{x}_2}{\overline{y}} = \widehat{a}_2 \cdot \frac{\overline{x}_2}{\overline{y}} =$$

$$= 0,17499 \cdot \frac{10,6525}{5,25333} = 0,35483$$

Увеличение торговой площади на 1%, при прочих равных условиях, повлечет за собой рост товарооборота на 0,80353%, а увеличение среднедневной интенсивности потока покупателей также на 1%, при прочих равных условиях, повлечет рост товарооборота на 0,35483%.