Гетероскедастичность

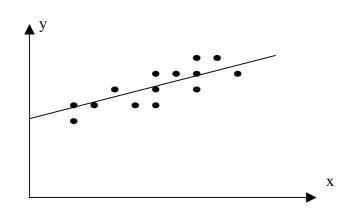
Общие понятия

Гомоскедастичность

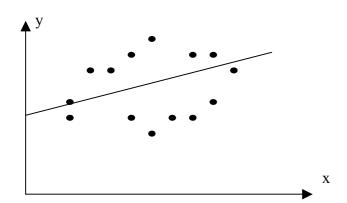
$$\sigma_u^2 = constant$$

m.e.

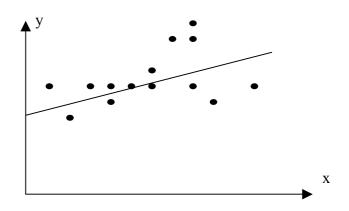
$$\sigma_u^2 \neq f(x_{1k}, x_{2k}, ..., x_{nk})$$

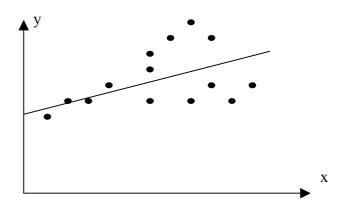

• *Гетероскедастичность* — это нарушение классического предположения о постоянстве дисперсий ошибок, т.е.

$$\sigma_u^2 \neq \text{constant}$$


ИЛИ

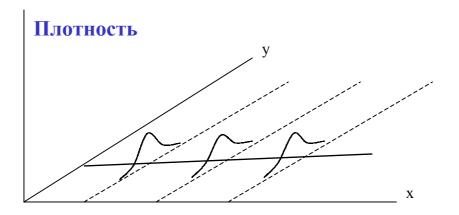
$$\sigma_u^2 = f(x_{1k}, x_{2k}, \dots, x_{nk})$$


Графическая интерпретация гомо- и гетероскедастичности

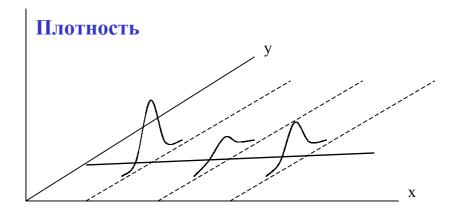

Гомоскедастичность

Гетероскедастичность

Гетероскедастичность


Гетероскедастичность

Причины гетероскедастичности


• большие различия между наименьшими и наибольшими значениями наблюдений выборки, взятой в пространственном разрезе (высокая дисперсия значений наблюдений)

• существенное различие в качестве исходных данных внутри выборки

Другая иллюстрация гетероскедастичности

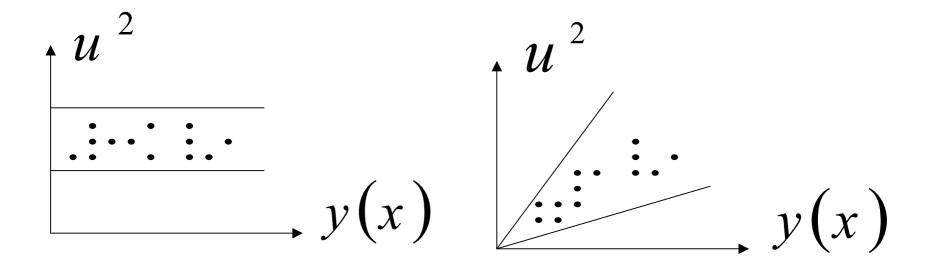
Гомоскедастичность

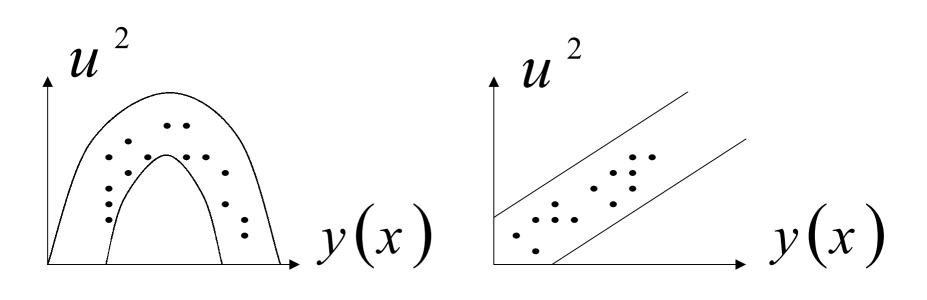
Гетероскедастичность

• <u>Чистая гетероскедастичность</u> — нарушение предположения о постоянстве дисперсий остатков в корректно специфицированном уравнении регрессии

- Смешанная (нечистая) гетероскедастичность
 - возникает при неверной спецификации модели в случае не включения в нее существенно влияющих переменных

• Наличие гетероскедастичности затрагивает эффективность оценок модели


оценка дисперсии их ошибок $\widehat{\sigma}_u^2$ не может быть использована для проверки значимости параметров модели и расчета их доверительных интервалов


Методы выявления гетероскедастичности

- анализ содержания проблемы,
- графический анализ,
- тест ранговой корреляции Спирмена,
- µ -критерий,
- параметрический и непараметрический тесты Гольдфельда-Квондта,
- тест Глейсера,
- тест Парка,
- тест Бреуша-Пэйгана,
- тест Уайта и др.

Графический анализ

• Для проведения графического анализа необходимо рассчитать значения квадратов отклонений u_i^2 и затем определить, имеют ли они какую-либо систематичность

μ -критерий

• 1-й шаг.

Все наблюдения зависимой переменной разбиваются на p групп $(r = \overline{1,p})$ в соответствии с уровнем изменения величины y

• 2-й шаг.

Для каждой группы рассчитываются суммы квадратов отклонений

$$S_r = \sum_{i=1}^{n_r} (y_{ir} - \bar{y}_r)^2$$

• 3-й шаг.

Находится общая сумма квадратов отклонений по всем группам

$$S = \sum_{r=1}^{p} S_r$$

• 4-й шаг.

Вычисляется параметр \mathcal{W}

$$w = \frac{\prod_{r=1}^{p} \left(\frac{S_r}{n_r}\right)^{\frac{n_r}{2}}}{\left(\frac{S}{n}\right)^{\frac{n}{2}}}$$

 n_r – число наблюдений \mathcal{V} -й группы

п – общее число наблюдений

• 5-й шаг.

Рассчитывается значение критерия Д

$$\mu = -2 \ln w$$

(приближенно соответствует критерию χ^2 при числе степеней свободы $\nu = p-1$, когда дисперсия всех наблюдений однородна)

Если

$$\mu \geq \chi^2$$

при заданном уровне значимости α , то имеет место <u>гетероскедастичность</u>

Пример

•Разобьем наблюдения на пять групп по пять наблюдений в каждой группе

Группа 1	Группа 2	Группа 3	Группа 4	Группа 5
1,82	3,71	3,24	2,83	1,49
2,19	3,07	2,12	3,03	2,69
4,23	1,75	3,95	3,08	2,29
1,66	4,78	2,28	3,49	1,92
1,84	3,35	0,47	2,00	4,22

•Найдем средние значения наблюдений каждой группы

$$\overline{y}_1 = 2,384$$
 $\overline{y}_2 = 3,332$
 $\overline{y}_3 = 2,412$
 $\overline{y}_4 = 2,886$
 $\overline{y}_5 = 2,522$

•Найдем сумму квадратов отклонений индивидуальных значений каждой группы от своего среднего значения

$$S_1 = \sum_{i=1}^{5} (y_{i1} - \overline{y}_1)^2 = 4,57708$$

$$S_3 = \sum_{i=1}^{5} (y_{i3} - \overline{y}_3)^2 = 6,92508$$

$$S_2 = \sum_{i=1}^{5} (y_{i2} - \overline{y}_2)^2 = 4.81128$$

$$S_4 = \sum_{i=1}^{5} (y_{i4} - \overline{y}_4)^2 = 1,21132$$

$$S_5 = \sum_{i=1}^{3} (y_{i5} - \overline{y}_5)^2 = 4,39268$$

•Рассчитаем общую сумму квадратов отклонений по пяти группам

$$S = \sum_{r=1}^{5} S_r = 21,91744$$

ulletОпределим параметр ${\mathcal W}$

$$w = \frac{\prod_{r=1}^{p} \left(\frac{S_r}{n_r}\right)^{\frac{n_r}{2}}}{\left(\frac{S}{n}\right)^{\frac{n_2}{2}}} =$$

$$= \frac{\left(\frac{4,58}{5}\right)^{\frac{5}{2}} \cdot \left(\frac{4,81}{5}\right)^{\frac{5}{2}} \cdot \left(\frac{6,93}{5}\right)^{\frac{5}{2}} \cdot \left(\frac{1,21}{5}\right)^{\frac{5}{2}} \cdot \left(\frac{4,39}{5}\right)^{\frac{5}{2}}}{\left(\frac{21,92}{25}\right)^{\frac{25}{2}}} = 0,178$$

•Найдем критерий Ц

$$\mu = -2 \ln w = -2 \cdot (-1.726) = 3,542$$

Табличное значение критерия $\chi^2 = 9,49$

для числа степеней свободы

$$v = p - 1 = 5 - 1 = 4$$

и уровня значимости $\alpha = 0.05$

Так как $\mu < \chi^2$, то делаем заключение об

отсутствии гетероскедастичности для

исследуемого набора данных

Тест ранговой корреляции Спирмена

• 1-й шаг.

На основе построенного уравнения регрессии рассчитываем величины остатков u_i

• 2-й шаг.

Ранжируем по возрастанию (убыванию) абсолютные значения остатков $|u_i|$ и значения независимой переменной x_j Рассчитываем коэффициент ранговой корреляции Спирмена

$$r_S = 1 - 6 \cdot \left[\frac{\sum_{i=1}^n d_i^2}{n(n^2 - 1)} \right]$$

 d_i – разность между рангами, которые приписываются двум характеристикам

$$(x_j \quad u \quad u) \quad i$$
-го объекта,

п – количество ранжируемых объектов.

• 3-й шаг.

Проверяем значимость коэффициента ранговой корреляции по критерию Стьюдента. Рассчитываем статистику Стьюдента

$$t = \frac{r_S \sqrt{n-2}}{\sqrt{1-r_S^2}}$$

Если $t_{pacy.} \ge t_{maбл.}$ для числа степеней свободы

v = n - 2 и уровня значимости α , то принимается

гипотеза о наличии гетероскедастичности остатков.

Если t_{pacy} < $t_{maбл}$, то считается, что в модели

имеет место гомоскедастичность

Пример

Независимая переменная x_1 — численность населения

Проранжируем по возрастанию численность населения и величины остатков модели

Население, тыс. чел.	Ранг	Модули остатков	Ранг	d_{i}	d_i^2
940,8	1	0,01667	1	0	0
1071,8	2	0,63702	16	-14	196
1172,3	3	0,79428	18	-15	225
1192,5	4	0,69994	17	-13	169
1211,2	5	0,10498	5	0	0
1255,1	6	1,80037	25	-19	361
1288,6	7	0,21139	9	-2	4
1332,1	8	0,81888	19	-11	121
1333,4	9	1,65011	24	-15	225
1384,3	10	1,18054	20	-10	100
1465,6	11	0,09936	3	8	64
1467,9	12	0,56415	15	-3	9
1491,1	13	0,42480	12	1	1
1498,4	14	0,11667	6	8	64
1723,9	15	1,57790	23	-8	64
1862,2	16	0,08118	2	14	196
1880,4	17	0,37616	11	6	36
2059,2	18	0,44007	13	5	25
2566,8	19	0,16261	7	12	144
2580,2	20	0,20826	8	12	144
2743	21	0,10447	4	17	289
2750,6	22	0,53837	14	8	64
3055,1	23	0,25425	10	13	169
3811,2	24	1,36929	21	3	9
5125,4	25	1,38299	22	3	9
,		,		\sum_{i}	2688

Коэффициент ранговой корреляции

$$r_S = 1 - 6 \cdot \left[\frac{2688}{25(25^2 - 1)} \right] = -0.0338$$

Статистика Стьюдента

$$t = \frac{-0,0338\sqrt{25-2}}{\sqrt{1-(-0,0338)^2}} = -17,9251$$

$$t_{\text{\tiny TAGM.}} = 1,714$$

$$v = 23$$
, $\alpha = 0.05$

Вывод: имеет место гетероскедастичность

•Тест Парка

В основе теста лежит предположение: дисперсия остатков изменяется пропорционально значению некоторого фактора

$$Var(u_i) = \sigma^2 Z_i^2$$

- σ² дисперсия гомоскедастической ошибки,
- Z фактор пропорциональности.

3 вопроса на засыпку:

- 1. Имеют ли место очевидные ошибки спецификации модели?
- 2. Насколько часто предмет исследований «страдает» гетероскедастичностью?
- 3. Дает ли график отклонений какое-либо свидетельство наличия гетероскедастичности?

• 1-й шаг.

Построение уравнения регрессии и

расчет отклонений
$$u_i$$
 $\left(i=\overline{1,n}\right)$

$$u_i = y_i - \hat{a}_0 - \hat{a}_1 x_1 - \dots - \hat{a}_m x_m$$

• 2-й шаг.

Использование значений отклонений для получения новой зависимой переменной (используется логарифм квадрата отклонений).

Построение вторичного уравнения регрессии

$$\ln(u_i^2) = \alpha_0 + \alpha_1 \ln Z_i + \varepsilon_i$$

• 3-й шаг.

Проверка значимости коэффициента регрессии при по критерию Стьюдента.

• Если коэффициент существенно отличается от нуля, то имеет место гетероскедастичность отклонений по отношению к независимой переменной Z;

• в противном случае, гетероскедастичности, относящейся к данному конкретному Z, скорее всего, не наблюдается

Пример

C целью выбора места строительства нового круглосуточно работающего кафе необходимо определить зависимость его дохода (y) от трех факторов: количества прямых конкурентов, находящихся в радиусе двух километров от кафе (x_1) , количества людей, живущих в радиусе трех километров от кафе (x_2) и среднегодового дохода семьи (x_3) живущей в данной окрестности.

Наблюдение	Доход кафе, грн.	число конкурентов,	численность	Доход семьи, грн.
1		ед.	проживающих, чел.	_
1	107919	3	65044	13240
2	118866	5	101376	22554
3	98579	7	124989	16916
4	122015	2	55249	20967
5	152827	3	73775	19576
6	91259	5	48484	15039
7	123550	8	138809	21857
8	160931	2	50244	26435
9	98496	6	104300	24024
10	108052	2	37852	14987
11	144788	3	66921	30902
12	164571	4	166332	31573
13	105564	3	61951	19001
14	102568	5	100441	20058
15	103324	2	39462	16194
16	127030	5	139900	21384
17	166755	6	171740	18800
18	125343	6	149894	15289
19	121886	3	57386	16702
20	134594	6	185105	19093
21	152937	3	114520	26502
22	109622	3	52933	18760
23	149884	5	203500	33242
24	98388	4	39334	14988
25	140791	3	95120	18505
26	101260	3	49200	16839
27	139517	4	113566	28915
28	115236	9	194125	19033
29	136749	7	233844	19200
30	105067	7	83416	22833
31	136872	6	183953	14409
32	117146	3	60457	20307
33	163538	2	65065	20111

1-й шаг.

Строим уравнение множественной регрессии

$$\hat{y} = 102188 - 9074x_1 + 0.355x_2 + 1.288x_3$$

Показатели значимости модели и ее параметров:

$$F = 15,65$$
 $t_2 = 4,88$ $t_3 = 2,37$ $\overline{R}^2 = 0,579$

	Traditional Strate Territory
	107919
Рассчитаем	118866
Tace mraem	98579
остатки	122015
OCIAIRM	152827
	91259
	123550
	160931
	98496
	108052
	144788
	164571
	105564
	102568
	103324
	127030
	166755
	125343
	121886
	134594
	152937
	109622
	149884
	98388
	140791
	101260
	139517
	115236
	136749
	105067
	136872
	117146
	163538

Наблюдаемое значение у

93383,01 106977,3 135908,4 115677,7 116768,1 138502,5 165550,4 121411,1 118275,1 118893,8 133977,9 132868 120597,7 116830,9 137985,5 149717,1 117902,3 171808,1 99146,41 132536,2

114104

143412,4

113884,4 146335,2

97662,51

131543,9

122563,4

133019,5

Предсказанное значение у

115087,8

121821,6

104785,9

130640,6

126345,3

Остатки

-7168,786

-2955,611

-6206,934

-8625,642

26481,71

-2124,01

16572,75

25022,58

-17181,75

-8716,113

6285,495

-979,4206

-15847,08

-15707,1

-15569,77

-6947,881

33887,02 4745,348

5055,142

-3391,515 3219,912

-8280,264

-21924,14

-758,4093

8254,777

-12844

-3895,421 1351,572

-9586,22

7404,49

5328,148

-5417,357

30518,48

2-й шаг.

Преобразуем остатки – рассчитаем логарифмы их квадратов.

Фактор пропорциональности – размер рынка

$$Z = x_2$$

-7168,786	2 51391485,68	1n x 17,75498	1n(4,2) 11,08282
u_{i} -2955,611	u_i^2 8735636,01		$\ln(u_i^2)$ 11,52659
-6206,934	38526023,5	17,46684	11,73598
-8625,642	74401693,06	18,12499	10,91961
26481,71	701280919	20,36842	11,20878
-2124,01	4511420,475	15,32212	10,78899
16572,75	274655904,8	19,43103	11,84085
25022,58	626129613,6	20,25507	10,82465
-17181,75	295212383,8	19,50321	11,55503
-8716,113	75970631,17	18,14586	10,54144
6285,495	39507443,21	17,492	11,11127
-979,4206	959264,7604	13,77392	12,02174
-15847,08	251129881,2	19,34148	11,0341
-15707,1	246712934,4	19,32374	11,51733
-15569,77	242417729,1	19,30617	10,58309
-6947,881	48273043,93	17,69238	11,84868
33887,02	1148330143	20,86157	12,05374
4745,348	22518328,46	16,92984	11,91768
5055,142	25554458,54	17,05632	10,95756
-3391,515	11502375,9	16,25806	12,12868
3219,912	10367831,76	16,15422	11,6485
-8280,264	68562769,46	18,04326	10,87678
-21924,14	480668027,2	19,99069	12,22342
-758,4093	575184,6448	13,26245	10,57984
8254,777	68141348,59	18,03709	11,46289
-12844	164968331,8	18,92126	10,80365
-3895,421	15174303,91	16,53511	11,64014
1351,572	1826745,66	14,41805	12,17626
-9586,22	91895622,88	18,33616	12,36241
7404,49	54826477,02	17,81968	11,3316
5328,148	28389161,01	17,16152	12,12244
-5417,357	29347757,64	17,19473	11,00969
30518,48	931377408	20,65218	11,08314

Уравнение регрессии

$$\ln(u^2) = 21,05 - 0,286 \ln x_2$$

Параметры качества уравнения

$$F = 0,209$$
 $t = -0,457$ $\overline{R}^2 = 0,0067$ $t_{maon.} = 2,042$

Вывод: нулевая гипотеза о гомоскедастичности остатков принимается