

Рассмотрим кейнсианскую модель определения дохода

$$C = a_0 + a_1 I + u \quad 0 < a_1 < 1$$

$$I_t = C_t + K_t$$

Оценка параметра a_1 рассчитывается по формуле

$$\widehat{a}_{1} = \frac{\sum (C_{t} - \overline{C})(I_{t} - \overline{I})}{\sum (I_{t} - \overline{I})^{2}} = \frac{\sum (a_{0} + a_{1}I_{t} + u_{t} - \overline{C})(I_{t} - \overline{I})}{\sum (I_{t} - \overline{I})^{2}} = \frac{\sum (a_{0} + a_{1}I_{t} - \overline{C})(I_{t} - \overline{I})^{2}}{\sum (I_{t} - \overline{I})^{2}} = \frac{\sum (a_{0} + a_{1}I_{t} - \overline{C})(I_{t} - \overline{I}) + \sum u_{t}(I_{t} - \overline{I})}{\sum (I_{t} - \overline{I})^{2}} = \widehat{a}_{1} + \frac{\sum u_{t}(I_{t} - \overline{I})}{\sum (I_{t} - \overline{I})^{2}}.$$

• Оценка параметра a_1 уравнения регрессии называется несмещенной, если ее математическое ожидание равно самой оценке

$$M(a_1) = \widehat{a}_1$$

Для нашего случая имеем

$$M(a_1) = \hat{a}_1 + M \left[\frac{\sum u_t (I_t - \bar{I})}{\sum (I_t - \bar{I})^2} \right]$$

● Если показать, что отношение

$$\frac{\sum u_t (I_t - \bar{I})}{\sum (I_t - \bar{I})^2}$$

не является нулем, то полученная оценка параметра a_1 является смещенной

Методы оценки параметров систем одновременных уравнений

• Метод непрямых наименьших квадратов;

• Метод инструментальных переменных;

• Двушаговый метод наименьших квадратов;

 Метод наибольшей вероятности ограниченной информации;

• Метод смешанного оценивания;

• Трехшаговый метод наименьших квадратов;

 Метод наибольшей вероятности полной информации.

Двушаговый метод наименьших квадратов (2МНК)

(метод инструментальных переменных)

- Нарушения условия независимости переменных и остатков можно избежать, если сумеем найти такую переменную, которая
 - является хорошей заменой для эндогенной (зависимой) переменной;
 - не коррелирует с ошибками (остатками) модели.

 Подставляя данную переменную вместо эндогенной в уравнение системы мы, тем самым, обеспечиваем выполнение необходимого условия

$$cov(x,u) = 0$$

• Рассмотрим некоторую систему одновременных уравнений

$$y_{1t} = \beta_0 + \beta_1 y_{2t} + \beta_2 x_t + u_{1t}$$

$$y_{2t} = \alpha_0 + \alpha_1 y_{1t} + \alpha_2 z_t + u_{2t}$$

• Если мы найдем переменную, которая сильно коррелирует с переменной y_2 , но не коррелирует с u, то мы сможем подставить ее в первое уравнение системы и, тем самым, избежать нарушения классического предположения.

Метод 2МНК использует редуцированную форму уравнений. Вся процедура разбивается на два шага

1 шаг Применение метода 1МНК к каждому из редуцированных уравнений по каждой из эндогенных переменных

• Так как независимые переменные, к числу которых относят также и лаговые переменные, не коррелируют с ошибками в редуцированных уравнениях, то получаемые оценки \mathcal{V}_s методом 1МНК уравнений в редуцированной форме являются несмещенными

 Эти оценки могут быть использованы для расчета оценок эндогенных переменных

$$\widehat{y}_{1t} = r_0 + r_1 x_t + r_2 z_t$$

$$\widehat{y}_{2t} = r_3 + r_4 x_t + r_5 z_t$$

• 2 шаг Замена переменных y_i на инструментальные переменные \widehat{y}_i только в правых частях структурных одновременных уравнений. Оценка преобразованных структурных уравнений методом 1МНК

• Таким образом, на втором шаге производится оценка параметров системы уравнений

$$y_{1t} = \beta_0 + \beta_1 \hat{y}_{2t} + \beta_2 x_t + u_{1t}$$
$$y_{2t} = \alpha_0 + \alpha_1 \hat{y}_{1t} + \alpha_2 z_t + u_{2t}$$

методом 1МНК

Метод 2МНК имеет ряд особенностей

- Оценки 2МНК все еще смещенные, но уже состоятельные. Чем больше выборка, тем более точные оценки системы одновременных уравнений мы получаем, тем меньше вариация получаемых оценок.
- Смещение оценок, получаемых с помощью 2МНК для малых выборок, имеет противоположный знак по отношению к смещению оценок, получаемых с помощью 1МНК

- Если получаемые инструментальные переменные слабо подходят в качестве замены эндогенным переменным (R^2 имеет низкое значение), то метод 2МНК не подходит для решения проблемы одновременных уравнений.
- Если объясняющие (независимые) переменные сильно коррелируют друг с другом, то 2МНК не дает хороших результатов. Мультиколлинеарность ведет к смещению оценок.
- *t* -статистики для оценки значимости параметров, получаемых с помощью 2МНК, являются более точными по сравнению с их аналогами, получаемыми методом 1МНК

Рассмотрим наивную линейную кейнсианскую макроэкономическую модель экономики США

$$I_{t} = C_{t} + K_{t} + G_{t} + NX_{t}$$

$$C_{t} = \beta_{0} + \beta_{1}ID_{t} + \beta_{2}C_{t-1} + u_{1t}$$

$$ID_{t} = I_{t} - T_{t}$$

$$K_{t} = \beta_{3} + \beta_{4}I_{t} + \beta_{5}ra_{t} + u_{2t}$$

$$ra_{t} = \frac{r_{t} + r_{t-1}}{2}$$

$$r_{t} = \beta_{6} + \beta_{7}I_{t} + \beta_{8}M \cdot 1_{t} + u_{3t}$$

- I_t валовой внутренний продукт в году t
- C_t общее личное потребление в году t
- K_t общие валовые частные домашние инвестиции в году t
- G_t правительственные расходы (покупка товаров и услуг) в году t
- NX_t чистый экспорт товаров и услуг (экспорт минус импорт) в году t

- T_t налоги в году t
- r_t ставка процента в году t
- $M1_t$ предложение денег (денежная масса M1) в году t
- ID_t доход, доступный для использования в году t
- ra_{t} среднее между r_{t} и r_{t-1} (ставка процента с лагом в 6 месяцев)

Эндогенные переменные

$$I_t \quad C_t \quad K_t \quad ID_t \quad r_t \quad ra_t$$

Экзогенные переменные

$$G_t$$
 NX_t T_t $M1_t$ r_{t-1} C_{t-1}

							Ī	
Год	С	K	r	I	ID	<i>M</i> 1	G	NX
1964	1170,7	325,9	4,40	1973,3	1291,0	160,4	470,8	5,9
1965	1236,3	367,0	4,49	2087,6	1365,7	167,9	487,0	-2,7
1966	1298,9	390,5	5,13	2208,3	1431,3	172,1	532,6	-13,7
1967	1337,7	374,4	5,51	2271,4	1493,2	183,3	576,2	-16,9
1968	1405,9	391,8	6,18	2365,6	1551,3	197,5	597,6	-29,7
1969	1456,7	410,3	7,03	2423,3	1599,8	204,0	591,2	-34,9
1970	1492,1	381,5	8,04	2416,2	1668,1	214,5	572,6	-30,0
1971	1538,8	419,3	7,39	2484,8	1728,4	228,4	566,5	-39,8
1972	1621,8	465,4	7,21	2608,5	1797,4	249,4	570,7	-49,4
1973	1689,5	520,8	7,44	2744,1	1916,3	263,0	565,3	-31,5
1974	1674,0	481,3	8,57	2729,3	1896,6	274,4	573,2	0,8
1975	1711,9	383,3	8,83	2695,0	1931,7	287,6	580,9	18,9
1976	1803,9	453,5	8,43	2826,7	2001,0	306,5	580,3	-11,0
1977	1883,7	521,3	8,02	2958,6	2066,6	331,4	589,1	-35,5
1978	1961,0	576,9	8,73	3115,2	2167,4	358,7	604,1	-26,8
1979	2004,5	575,2	9,63	3192,4	2212,6	386,1	609,1	3,6
1980	2000,3	509,3	11,94	3187,1	2214,3	412,2	620,5	57,0
1981	2024,2	545,5	14,17	3248,8	2248,6	439,1	629,7	49,4
1982	2050,7	447,3	13,79	3166,0	2261,5	476,4	641,7	26,3
1983	2146,0	504,0	12,04	3279,1	2331,9	522,1	649,0	-19,9
1984	2249,3	658,4	12,71	3501,4	2469,8	551,9	677,7	-84,0
1985	2354,8	637,0	11,37	3618,7	2542,8	620,1	731,2	-104,3
1986	2455,2	643,5	9,02	3721,7	2640,9	725,4	760,5	-137,5
1987	2520,9	674,8	9,38	3847,0	2686,3	744,2	780,2	-128,9
1988	2592,2	721,8	9,71	3996,1	2788,3	776,0	782,3	-100,2

Применим метод 2МНК

• Несмотря на то, что в модели шесть эндогенных переменных, только три из них представлены в правых частях стохастических уравнений. Таким образом, нужны только три редуцированных уравнения для оценки их с помощью 2МНК

1 шаг.

Найдем инструментальные переменные \widehat{I}_{t} , $\widehat{I}\widehat{D}_{t}$ и $\widehat{r}\widehat{a}_{t}$

Так, для $\widehat{I}\widehat{D}_{t}$ имеем

$$\widehat{I}\widehat{D}_{t} = 232,6 - 0,6G_{t} - 0,73NX_{t} + 0,08T_{t} + 1,17C_{t-1} + 9,8r_{t-1} - 0,27M1_{t}$$

Для данного уравнения $R^2 = 0998$ $t_1 = -25$

$$t_2 = -43$$
 $t_3 = 0.6$ $t_4 = 17.8$

$$t_5 = 2.7$$
 $t_6 = -2.1$ $DW = 2.51$

2 шаг.

Используем найденные значения инструментальных переменных для того, чтобы рассчитать параметры уравнений (2), (4) и (6). Воспользуемся методом 1МНК. Получим следующие три уравнения регрессии.

Для сравнения запишем уравнения, полученные прямым расчетом методом 1МНК, без применения процедуры замены переменных, используемой в методе 2МНК.

Метод 2МНК

Метод 1МНК

$$C_{t} = -55,3 + 0,64ID_{t} + 0,34C_{t-1}$$

$$R^{2} = 0.996$$

$$t_{1} = 3.8 \qquad t_{2} = 1.9 \quad DW = 0.69$$

$$\widehat{K}_{t} = -70,4 + 0,23I_{t} - 13,1ra_{t}$$

$$R^2 = 0.924$$
 $t_1 = 13 A$ $t_2 = -3.6$ $DW = 1.77$

$$\hat{r_t} = -9.8 + 0.0082I_t - 0.014M1_t$$

$$R^2 = 0.585$$

$$t_1 = 3.33$$

$$t_2 = -2.0 DW = 0.48$$

Идентификация модели

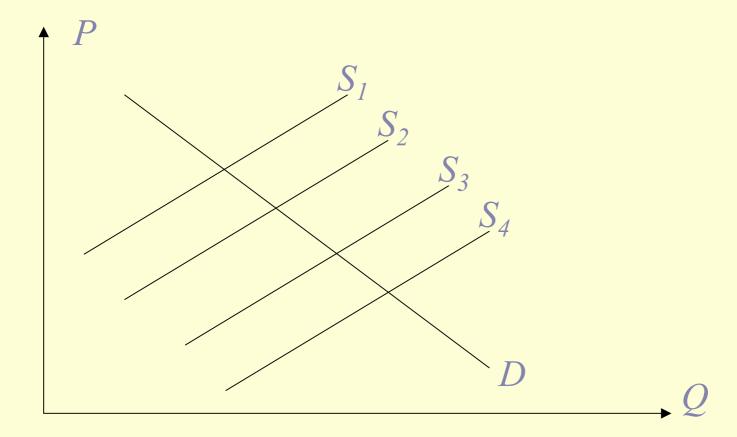
 Пусть имеется система одновременных уравнений для спроса и предложения товара. В качестве независимой переменной выступает цена товара Р

$$Q_{Dt} = a_0 + a_1 P_t + u_{Dt}$$

$$Q_{St} = b_0 + b_1 P_t + u_{St}$$

Чтобы их различить, необходимо иметь некоторые заранее заданные переменные, которые позволят сделать эти различия. Добавим во второе уравнение новую переменную Z

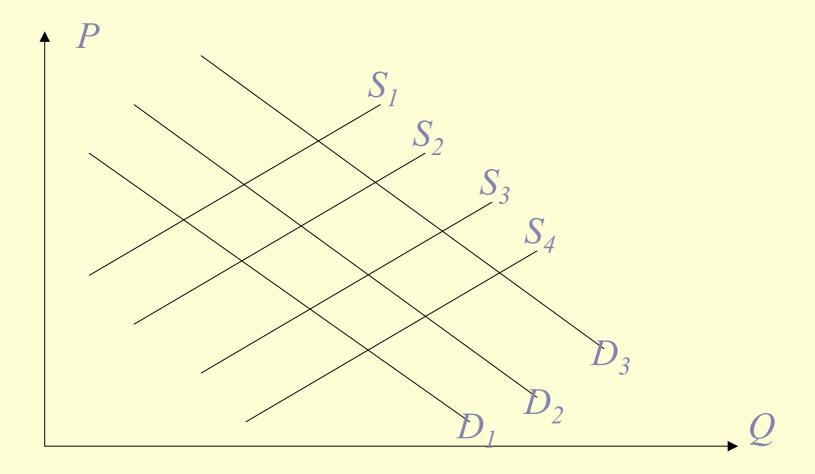
$$Q_{St} = b_0 + b_1 P_t + b_2 Z_t + u_{St}$$



 ■ Если бы переменная Z присутствовала и в уравнении спроса, то различить два уравнения снова было бы невозможно

$$Q_{Dt} = a_0 + a_1 P_t + a_2 Z_t + u_{Dt}$$

$$Q_{St} = b_0 + b_1 P_t + b_2 Z_t + u_{St}$$



Правило

 необходимо иметь хотя бы одну объясняющую переменную в каждом уравнении, которой нет в другом

Например

$$Q_{Dt} = a_0 + a_1 P_t + a_2 X_t + u_{Dt}$$

$$Q_{St} = b_0 + b_1 P_t + b_2 Z_t + u_{St}$$

Для идентификации уравнений используются условие порядка и условие ранга

Условие порядка (необходимое, но не достаточное условие идентификации)

Условие порядка − систематический метод для определения, может ли конкретное уравнение из системы одновременных уравнений быть потенциально идентифицированным. Если уравнение удовлетворяет условию порядка, то оно идентифицировано во всех (но только в ограниченном их числе) случаях.

Для применения условия порядка необходимо определить

• количество независимых заранее определенных переменных (экзогенных и лаговых) для всей системы;

• количество угловых коэффициентов, которые оцениваются для конкретного уравнения

Условие порядка

• Необходимым условием для уравнения быть идентифицированным является то, что число заранее определенных (независимых) переменных в системе должно быть больше или равно числу угловых коэффициентов в уравнении, которое идентифицируется

 $K \geq b_s$

К – число заранее определенных экзогенных переменных,

b_s – число оцениваемых угловых коэффициентов для идентифицируемого уравнения

Другое определение

• Число заранее определенных переменных в системе уравнений, которое исключено из уравнения, должно быть больше или равно числу эндогенных переменных, включенных в уравнение, минус один

$$K - k \ge m - 1$$

 – число заранее определенных переменных в отдельном уравнении,

 — число эндогенных переменных в отдельном уравнении

Пусть имеется система одновременных уравнений

$$Q_{Dt} = a_0 + a_1 P_t + a_2 X_{1t} + a_3 X_{2t} + u_{Dt}$$

$$Q_{St} = b_0 + b_1 P_t + b_2 X_{3t} + u_{St}$$

$$Q_{St} = Q_{Dt}$$

 Q_{Dt} P_t Q_{St} — эндогенные переменные

 X_{3t} X_{2t} X_{1t} — экзогенные переменные

■ Первое уравнение идентифицировано, так как число заранее заданных переменных в системе одновременных уравнений равно числу угловых коэффициентов, которые необходимо оценить в данном уравнении:

$$3 = 3$$

 Второе уравнение также идентифицировано с помощью условия порядка, так как число независимых переменных по-прежнему равно 3, а число оцениваемых угловых коэффициентов в данном уравнении − 2. Таким образом, условие порядка выполняется:

• Рассматриваемый случай носит название переидентификации

Ранговое условие идентификации

• В системе одновременных уравнений, состоящей из M уравнений и содержащей Mэндогенных переменных, уравнение будет идентифицированным тогда и только тогда, когда ранг матрицы, составленной из коэффициентов, которые соответствуют исключенным переменным рассматриваемого уравнения во всех других уравнениях модели кроме данного, равен M-1

Рассмотрим систему одновременных уравнений

$$y_{1t} = b_{10} + b_{12}y_{2t} + b_{13}y_{3t} + \gamma_{11}x_{1t} + y_{22}x_{2t} + b_{13}y_{3t} + \gamma_{21}x_{1t} + \gamma_{22}x_{2t} + u_{2t}$$

$$y_{2t} = b_{20} + b_{31}y_{1t} + \gamma_{31}x_{1t} + \gamma_{32}x_{2t} + u_{2t}$$

$$y_{3t} = b_{30} + b_{31}y_{1t} + b_{42}y_{2t} + v_{31}x_{1t} + \gamma_{32}x_{2t} + v_{3t}$$

$$y_{4t} = b_{40} + b_{41}y_{1t} + b_{42}y_{2t}$$

$$y_1, y_2, y_3, y_4$$
 — эндогенные переменные

 X_1, X_2, X_3 — экзогенные переменные

Проверим условие порядка

Уравнение	K-k	m-1	Идентификация
1	2	2	Да
2	1	1	Да
3	1	1	Да
4	2	2	Да

Рассмотрим применение рангового условия

Перепишем систему уравнений таким образом, что все параметры, кроме ошибок, перенесены в левую часть

Ур-е	1	y ₁	y ₂	y ₃	y ₄	X ₁	\mathbf{x}_2	X ₃
1	-b ₁₀	1	-b ₁₂	-b ₁₃	0	-γ ₁₁	0	0
2	-b ₂₀	0	1	-b ₂₃	0	-γ ₂₁	-γ ₂₂	0
3	-b ₃₀	-b ₃₁	0	1	0	-γ ₃₁	- γ ₃₂	0
4	-b ₄₀	-b ₄₁	-b ₄₂	0	1	0	0	-γ ₄₃

Рассмотрим первое уравнение.

Построим матрицу коэффициентов при переменных

$$\mathcal{Y}_4$$
 \mathcal{X}_2 \mathcal{X}_3 ,

включенных в остальные уравнения модели

$$A = \begin{pmatrix} 0 & -\gamma_{22} & 0 \\ 0 & -\gamma_{32} & 0 \\ 1 & 0 & -\gamma_{43} \end{pmatrix}$$

Для того чтобы найти ранг матрицы, необходимо рассчитать определитель

$$\begin{vmatrix} A \\ A \end{vmatrix} = \begin{vmatrix} 0 & -\gamma_{22} & 0 \\ 0 & -\gamma_{32} & 0 \\ 1 & 0 & -\gamma_{43} \end{vmatrix} = 0$$

Так как определитель равен нулю, то ранг матрицы не равен

M-1

Отсюда условие ранга не выполняется и первое уравнение не может быть идентифицировано

Идентифицированным является только четвертое уравнение

Процедура проверки идентификации системы уравнений с помощью рангового условия

• 1 шаг. Записываем систему уравнений в табличной форме;

• 2 шаг. Вычеркиваем коэффициенты рядка для идентифицируемого уравнения;

- 3 шаг. Вычеркиваем столбцы, соответствующие нулевым коэффициентам рассматриваемого уравнения;
- 4 шаг. Получаем необходимую матрицу и рассчитываем ее ранг. Если ранг равен M-1, то уравнение идентифицировано, если меньше M-1, то нет

• Общее правило проверки соответствия уравнений системы одновременных уравнений условию идентификации

• Если K - k > m - 1 и RankA = M - 1, то уравнение переидентифицировано;

• Если K - k = m - 1 и RankA = M - 1, то уравнение точно идентифицировано;

- Если $K k \ge m 1$ и RankA < M 1, то уравнение не идентифицировано;
- Если K k < m 1, то структурное уравнение недоопределено.
 - \mathbf{B} этом случае RankA < M-1.

Рекурсивные модели

■ Модель называется рекурсивной, если ее структурные уравнения можно записать таким образом, что первое содержит в правой части только независимые переменные, второе только независимые и одну эндогенную и так далее.

$$y_1 = f(x_1, ..., x_k, u_1),$$

 $y_2 = f(x_1, ..., x_k, y_1, u_2),$
 $y_3 = f(x_1, ..., x_k, y_1, y_2, u_3),$
 \vdots

 К рекурсивным моделям может быть применен метод 1МНК последовательно, начиная с первого уравнения