
# Министерство образования и науки Украины Донецкий национальный университет



### ЭКОНОМЕТРИЯ

Программа курса, методические указания и контрольные задания для студентов заочного отделения

Эконометрия. Программа курса, методические указания и контрольные задания для студентов заочного отделения / сост . О.Г. Кривенчук, Н.Г. Гузь. Донецк; ДонГУ. 1998. 24 с.

Пособие содержит программу курса «Эконометрия», задания для выполнения контрольной работы студентам заочного отделения экономических специальностей и методические указания по выполнению индивидуальной работы.

Составители: О.Г. Кривенчук, доцент, кандидат экономических наук

Н.Г. Гузь, доцент, доктор экономических наук

## Общие замечания к изучению курса «Эконометрия» и выполнению контрольной работы.

1. Планами обучения студентов-заочников экономических специальностей по курсу «Эконометрия» предусмотрено чтение лекций (10 часов), проведение практических и лабораторных занятий (8 часов), выполнение контрольной работы и сдачу экзамена.

Студент должен самостоятельно освоить программу курса и продемонстрировать при защите контрольной работы основные навыки применения теоретических знаний при решении конкретных экономических задач.

- 2. Контрольная работа состоит из трех заданий. Номер варианта выбирается по последней цифре номера зачетной книжки. Цифра «0» соответствует десятому варианту.
- 3. В контрольной работе необходимо указать фамилию, имя, отчество, курс, группу, номер зачетной книжки, номер варианта, дату отсылки работы, домашний адрес студента.
- 4. Решение задач следует сопровождать подробными пояснениями с приведением всех формул, по которым производился расчет. Помимо получения результатов решения требуется детальный экономический анализ и соответствующие выводы и предложения, связанные с управлением экономическим процессом.
- 5. В конце работы указать литературные источники, которые студент использовал при изучении курса.

Если расчеты производились с использованием вычислительной техники, указать вид техники, название программ и основные действия, которые выполнены с их помощью.

#### Программа курса «Эконометрия».

**Введение.** Предмет курса. Исторический экскурс. Место и значение эконометрии среди других дисциплин фундаментальной подготовки специалистов-экономистов. Задачи и методы прикладной эконометрии. Этапы экономического анализа.

- <u>Тема 1.</u> Эконометрическое моделирование. Понятие модели. Основные этапы моделирования. Классификация экономико-математических моделей. Связь и различие между регрессионными и эконометрическими моделями. Примеры задач регрессионного анализа (классического и обобщенного эконометрического).
- **Тема 2.** Регрессионное уравнение, систематическая часть регрессанда. Линейное уравнение множественной регрессии. 1-МНК оценщик: формирование целевой функции, нахождение системы нормальных уравнений, решение системы в матричном виде. Интерпретация оценок  $\hat{\beta_k}$ . Нахождение математического ожидания величины y ( $\hat{y}_t$ ). Нахождение вектора ошибок  $\hat{u}_t$ , относительной ошибки прогноза, дисперсии возмущений (ошибок). Стандартизированные регрессионные коэффициенты, коэффициенты эластичности, ковариационная матрица оцененных коэффициентов регрессии. Желаемые статистические свойства оценщиков. Выводы о применимости 1-МНК оценщика в эмпирических исследованиях.
- <u>**Тема 3.**</u> Показатели адекватности регрессионной модели. Коэффициенты детерминации, t тесты, F тесты.
- <u>Тема 4.</u> Обобщенные регрессионные модели, связь с эконометрическими моделями. Сущность понятия «обобщенная линейная регрессионная модель», ковариационная матрица вектора возмущений, обобщенный МНК. Автокорреляция возмущений, проведение d тестов, метод Эйткена. Пространственная корреляция возмущений. Гетероскедастичность возмущений и оценка Эйткена.
- Тема 5. Оценка параметров системы одновременных уравнений. Взаимозависимость уравнений. Односторонняя функциональная зависимость. Рекурсивные модели, блочно-рекурсивные, как эконометрические модели. Модель оптимизации или принятия решения. Макроэкономическая модель I (простейшая версия мультипликаторной модели Кейнса). Понятие уравнения поведения (уравнения реакции). Приведенная (редуцированная) форма модели. Мультипликаторы линейной взаимозависимой системы. Макроэкономическая модель II. Понятие идентификации параметров уравнения эконометрической комплексной модели.
- <u>Тема 6.</u> Агрегированные модели долгосрочного развития экономики. Функция выпуска, функция затрат. Понятие изокванты, предельной нормы

замещения, эластичности замещения ресурсов, средней фондоотдачи, предельной фондоотдачи. Функция Кобба-Дугласа. Функция с постоянной эластичностью замещения (функция СЭS); кусочно-линейная производственная функция.

<u>Тема 7.</u> Производственные функции при моделировании и анализе экономических систем. Построение производной функции. Применение функции в управлении производством. Особенности расчета и исследования экономических характеристик степенной производственной функции.

#### Список рекомендуемой литературы по курсу «Эконометрия».

- 1. Аллен Р. «Математическая эконометрия». –М.: Иностранная литература, 1963. 606 с.
- 2. Винн Р., Холден К. «Введение в прикладной эконометрический анализ». М.: Финансы и статистика, 1981. –283 с.
- 3. Гранберг А.Г. Статистическое моделирование и прогнозирование. М.: Финансы и статистика, 1990. 378 с.
- 4. Дадаян В.С. Моделирование глобальных экономических процессов. М.: Экономика, 1984. 276 с.
- 5. Джонстон ДЖ. Эконометрические методы. М.: Статистика, 1965. 361 с.
- 6. Дрейпер Н., Смит Г. Прикладной регрессионный анализ. М.: Финансы и статистика, 1986. 1 365., т. II 379 с.
- 7. Кейн Э. Экономическая статистика и эконометрия. Вып. 1, 2 М.: 1977.
- 8. Клас А., Гергели К., Колек Ю., Шуян И. Введение в эконометрическое моделирование. М.: Статистика, 1978.
- 9. Клейнер Г.Б. Производные функции. М.: Финансы и статистика, 1986. 221 с.
- 10. Колек Ю., Шуян И. Эконометрические модели в социалистических странах. М.: Экономика, 1978. 151 с.
- 11. Лизер С. Эконометрические методы и задачи. М.: 1971. 247 с.
- 12. Ляшенко И.Н. Макромодели экономического роста. К.: Вища школа. 1979. 151 с
- 13. Маленко Э. Лекции по микроэкономическому анализу. М.: Наука, 1985. 422 с.
- 14. Маленко Э. Статистические методы эконометрии. М.: Статистика, 1975. 321 с.
- 15. Мартинос С. Методические проблемы построения и применения эконометрических моделей. Вильнюс: Максклас. 1979. 170 с.
- 16.Пирогов Г., Федоровский Ю. Проблемы структурного оценивания в эконометрии. М.: Статистика, 1979.
- 17. Райцин В.Я. Математические методы и модели планирования уровня жизни. М.: Экономика, 1970. 389 с.
- 18. Теория и практика статистического моделирования экономики. (Под редакцией Б.П. Суворова). М.: Финансы и статистика, 1985. 271 с.

- 19. Гинтнер Г. Введение в эконометрию. М.: Статистика, 1965. 361 с.
- 20.Шаттелес Т. Современные эконометрические методы. М.: Статистика, 1975. 161 с.
- 21. Гинтнер Г. Введение в эконометрию. М.: Статистика, 1964.
- 22. Грубер И. Эконометрия І. Введение во множественную регрессию и эконометрию. 1995. (часть 1, 2).

Грубер И. Эконометрия 2. Введение во множественную регрессию и эконометрию. 1995. (часть 3, 4). Перевод г. Киев 1995 г., доцент, к.э.н. А.Б. Воронова.

#### Контрольные задания.

#### Первое задание.

**Вариант 1.** На основании данных **таблицы** 1 (приложения) в разрезе цехов основного производства машиностроительного завода необходимо:

- а) проверить однородность совокупности наблюдений, отобрать показатели для построения производственной функции производительности труда;
  - б) построить производственную функцию;
  - в) дать оценку достоверности функции и ее параметров;
- г) найти экономические характеристики взаимосвязи и сделать выводы по управлению уровнем производительности труда на основе производственной функции.

Вариант 2. На основе данных таблицы 1 (приложения):

- а) проверить однородность совокупности наблюдений, отобрать показатели для построения производственной функции заработной платы;
  - б) построить производственную функцию;
  - в) дать оценку достоверности функции и ее параметров;
- г) найти экономические характеристики взаимосвязи и сделать выводы по управлению уровнем заработной платы.

**Вариант 3.** Используя данные **таблицы 1** (приложения) необходимо:

- а) отобрать показатели для построения производственной функции нормы выработки;
  - б) проверить однородность совокупности наблюдений;
  - в) построить производственную функцию;
  - г) проверить достоверность ее параметров;
- д) рассчитать экономические характеристики взаимосвязи и сделать выводы на основе количественных характеристик связи.

**Вариант 4.** На 10 промышленных предприятиях приведены данные, характеризующие объем производства продукции, среднегодовую стоимость производственных фондов и численность работающих (таблица 2 приложения). Используя эти данные, необходимо:

- а) определить аналитическую форму зависимости объема производства от стоимости фондов и численности работающих;
  - б) построить производственную функцию;
  - в) дать оценку достоверности производственной функции и ее параметров;
- г) определить экономические характеристики, сделать выводы об эффективности использования производственных ресурсов.

**Вариант 5.** По 10 сельскохозяйственным предприятиям приведены данные об урожайности зерновых, количестве внесенных удобрений на 1 га, затратах труда на 1 га (таблица 3 приложения). Используя эти данные, необходимо:

- а) определить аналитическую форму зависимости урожайности от внесенных удобрений и затрат труда;
  - б) построить производственную функцию;
  - в) дать оценку достоверности функции и ее параметров;
- г) определить экономические характеристики взаимосвязи по производственной функции и сделать выводы об эффективности использования удобрений и трудовых ресурсов.

**Вариант 6.** На основании данных **таблицы 4** (приложения) выполнить задание, аналогичное варианту 1.

**Вариант 7.** На основании данных таблицы 4 (приложения) выполнить задание, аналогичное варианту 2.

**Вариант 8.** На основании данных таблицы 4 (приложения) выполнить задание, аналогичное варианту 3.

**Вариант 9.** На основании данных **таблицы 5** (приложения) выполнить задание, аналогичное варианту 4.

**Вариант 10.** На основании данных **таблицы** 6 (приложения) выполнить задание, аналогичное варианту 5.

#### Второе задание.

Построить производственную функцию типа  $y = a_0 x_1^{a_1} x_2^{a_2}$ , используя данные о выпуске продукции y, затратах труда  $x_1$  и затратах производственных фондов  $x_2$  за десять лет.

Рассчитайте характеристики:

- среднюю производительность труда;
- среднюю фондоотдачу;
- предельную производительность труда;
- предельную фондоотдачу;
- эластичность выпуска продукции по затратам труда;
- эластичность выпуска продукции по производственным фондам;
- потребность в производственных фондах;
- потребность в ресурсах труда;
- фондовооруженность труда;
- предельную норму замещения затрат труда производственными фондами;
- эластичность замещения ресурсов.

Найдите прогноз выпуска продукции  $y_{np}$  для заданных значений  $x_1$  и  $x_2$ . Данные к заданию по вариантам приведены в таблицах 7 и 8 (приложения).

#### Третье задание.

Приведите пример из Вашей сферы деятельности, который с помощью эконометрической модели описывал бы зависимость количественного показателя от одной или нескольких переменных.

#### Методические указания по выполнению первого задания.

Первое задание желательно выполнять с помощью ЭВМ. При этом используются пакеты прикладных программ по математической статистике, в частности построение регрессионной модели, расчет основных характеристик модели.

Вниманию студентов предлагается программа STAT, разработанная в ДонГУ на кафедре математики и математических методов в экономике. Работа с программой в диалоговом режиме на русском языке.

Результаты условного примера приведены в таблицах 9 - 15 (приложения).

Ниже приводятся основные формулы для проведения расчетов, при этом предлагается воспользоваться расчетами с помощью действия над матрицами, которые приводятся без выводов и доказательств. Поэтому при отсутствии программ по статистике промежуточные расчеты можно осуществлять с помощью программ, производящих действия над матрицами (LOTUS и др.).

Регрессионное уравнение имеет вид

$$y = \beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n$$

при определении коэффициентов  $oldsymbol{eta}$  по методу наименьших квадратов получаем их значение  $\hat{eta}$  , решая систему нормальных уравнений.

В матричном виде это решение находится по формуле

$$\hat{\beta} = (x'x)^{-1} x'y$$

Матрица X включает  $x_{t1} = 1$  (где t - число наблюдений), в таком случае  $\beta_1$  - свободный член уравнения регрессии.

После подстановки данных наблюдений в полученную регрессионную модель найдем значения  $\hat{\mathcal{Y}}$  - оцененную множественную функцию регрессии.

Вектор ошибок:

$$u = y - \hat{y} = y - x \hat{\beta}$$

Относительная оценка прогноза:

$$\frac{\hat{u}_t}{y_t} \cdot 100 \text{ (B \%)}$$

Дисперсия возмущений (ошибок)

$$\hat{\sigma}_{u}^{2} = \frac{cymma}{uucno} \frac{\kappa вадратов}{cmeneнeŭ} \frac{ouuuбок}{csoбoды} = \frac{\sum_{t=1}^{T} u_{t}^{2}}{T - K} = \frac{y'y - \hat{y}'y}{T - K} = \frac{y'y - \hat{\beta}x'y'}{T - K}$$

где Т - длина ряда

k - количество регрессоров

Если ошибки уже оценены, то

$$\hat{\sigma}_{u}^{2} = \frac{\hat{u}'\hat{u}}{T - K}$$

Средняя ошибка аппроксимации

$$\overline{E} = \frac{1}{T} \sum_{t=1}^{T} \frac{\hat{u}_t}{y}$$

В экономических расчетах допустима погрешность модели 10-15 %. Стандартизированные регрессионные коэффициенты

$$\hat{\beta}_{k}^{S} = \hat{\beta}_{k} \frac{S_{k}}{S_{y}} \quad (k = 2, ... K; S_{y} > 0)$$

где  $S_k$ - эмпирическое стандартное (среднеквадратическое) отклонения k-го регрессора  $x_k$ ,

 $S_y$  - эмпирическое стандартное отклонение регрессанда y.

Так как для  $x_1$   $S_1 = 0$ , то  $\hat{\beta}_1^{S}$  не имеет смысла.

$$S_k = \sqrt{\sigma_k^2}$$
 Корень квадратный из дисперсии.

Коэффициенты эластичности:

 $\varepsilon_k = \frac{\partial y_t}{\partial x_{tk}} \cdot \frac{x_k'}{y'}$   $(y' \neq 0; k = 2,...K)$ , где y' и  $x_k'$  - значения y и  $x_k$ , определяющие точку регрессионной функции, для которой вычисляется коэффициент эластичности.

Для линейного регрессионного уравнения

$$\frac{\partial y_t}{\partial x_{tk}} = \hat{\beta}_k$$

Значит:

$$\hat{\varepsilon}_k = \hat{\beta}_k \frac{x'_k}{y'}; \quad (y' \neq 0)$$

Средняя эластичность при  $x'_k = \overline{x}$ ;  $y' = \overline{y}$ 

$$\hat{\varepsilon}_{k} = \hat{\beta}_{k} \frac{\overline{x}_{k}}{\overline{y}}$$

Нахождение истинной ковариационной матрицы для  $\hat{eta}$  .

Дисперсии  $\sigma_{\hat{\beta}_k}^2$  и ковариации  $\sigma_{\hat{\beta}_k\hat{\beta}_k}^2$  можно определить с помощью действий над матрицами

$$\hat{\Sigma}_{\hat{\beta}} = \hat{\sigma}_{u}^{2} (x'x)^{-1} = \begin{bmatrix} \sigma_{\hat{\beta}_{1}}^{2} & \sigma_{\hat{\beta}_{1}\hat{\beta}_{2}} & \dots & \sigma_{\hat{\beta}_{1}\hat{\beta}_{k}} \\ \sigma_{\hat{\beta}_{2}\hat{\beta}_{1}} & \sigma_{\hat{\beta}_{2}}^{2} & \dots & \sigma_{\hat{\beta}_{2}\beta_{k}} \\ \dots & \dots & \dots & \dots \\ \sigma_{\hat{\beta}_{k}\hat{\beta}_{1}} & \sigma_{\hat{\beta}_{k}\beta_{2}} & \dots & \sigma_{\hat{\beta}_{k}}^{2} \end{bmatrix}$$

Отрицательный знак при  $\hat{\sigma}_{\hat{\beta}_k\hat{\beta}_{k'}}$  говорит об обратной связи.

О силе этой связи лучше говорят коэффициенты корреляции:

$$R_{\hat{\beta}_{k}\hat{\beta}_{k}'} = \frac{\hat{\sigma}_{\hat{\beta}_{k}\hat{\beta}_{k}'}}{\hat{\sigma}_{\hat{\beta}_{k}}\hat{\sigma}_{\hat{\beta}_{k}'}}$$

Показателем адекватности регрессионной модели является коэффициент детерминации  $R^2$  - квадрат эмпирического коэффициента корреляции между двумя рядами наблюдений:  $y_t$  - теоретическими и  $\hat{y}_t$  - расчетными (t=1...T)

$$R^{2} = \frac{\left[\sum_{t=1}^{T} (y_{t} - \overline{y})(\hat{y}_{t} - \overline{y})\right]^{2}}{\sum_{t=1}^{T} (y_{t} - \overline{y})^{2} \sum_{t=1}^{T} (\hat{y}_{t} - \overline{y})^{2}}$$

$$0 \le R^2 \le 1$$

Иначе:

$$R^{2} = \frac{\sum_{t=1}^{T} (\hat{y}_{t} - \overline{y})^{2}}{\sum_{t=1}^{T} (y_{t} - \overline{y})^{2}}$$

$$R^{2} = 1 - \frac{\sum_{t=1}^{T} \hat{u}_{t}^{2}}{\sum_{t=1}^{T} (y_{t} - \overline{y})^{2}}$$

Простейшее вычисление  $R^2$ :

$$R^{2} = \frac{\sum_{t=1}^{T} y_{t}^{2} - (\sum_{t=1}^{T} y_{t})^{2}}{\hat{\beta}'X'Y - (\sum_{t=1}^{T} y_{t})^{2}} T$$

Частный коэффициент детерминации  $\Delta R_k^2$  показывает предельный вклад k го регрессора в  $R^2$  .

$$\Delta R_k^2 = \frac{(1 - R^2)t_k^2}{T - K},$$

где  $t_k = \frac{\hat{\beta_k}}{\hat{\sigma}_{\beta_k}}$  - это t - статистика для k -го регрессионного коэффициента

$$\hat{\sigma}_{\beta_k} = \sqrt{\frac{\displaystyle\sum_{t=1}^T (\hat{y} - \overline{y})^2}{(n-2)\displaystyle\sum_{t=1}^T (x_k - \overline{x}_k)^2}}$$
 - стандартная ошибка параметра регрессии

Если  $t_k > t_\alpha$  , то параметр  $\hat{\boldsymbol{\beta}}_k$  статистически достоверный (значимый).

Значимость всей модели и ее параметров в совокупности определяется по критерию Фишера. Упрощенный расчет:

$$F = \frac{R^2}{1 - R^2} \cdot \frac{T - K}{K - 1}$$

F сравнивается с F <sub>табл.</sub> при заданном уровне значимости α и числе степеней свободы v <sub>1</sub> = T - K v <sub>2</sub> = T - 1

Если  $F > F_{\text{табл.}}$ , уравнение статистически значимо (достоверно).

Наличие автокорреляции возмущений можно проверить с помощью d - статистики Дарбина-Уотсона:

$$d = \frac{\sum_{t=2}^{T} (\hat{u}_{t} - \hat{u}_{t-1})^{2}}{\sum_{t=1}^{T} \hat{u}_{t}^{2}}$$

Таблицы d - критерия содержат  $d_{\scriptscriptstyle H}(\alpha,\,K,\,T)$  и  $d_{\scriptscriptstyle G}(\alpha,\,K,\,T)$  - нижнее и верхнее значения для одностороннего теста;  $d_{\scriptscriptstyle H}(\frac{\alpha}{2},K,T)$  и  $d_{\scriptscriptstyle G}(\frac{\alpha}{2},K,T)$  для двухстороннего теста.

При проведении теста на наличие автокорреляции (двухстороннего) если  $d < d_{_{\mathit{H}}}(\frac{\alpha}{2})_{_{\mathit{U}}} \times d > 4 - d_{_{\mathit{H}}}(\frac{\alpha}{2})_{_{\mathit{L}}},$  автокорреляция есть;

если  $d_{\scriptscriptstyle e}(\frac{\alpha}{2}) < d < 4 - d_{\scriptscriptstyle e}(\frac{\alpha}{2})$ , автокорреляции нет;

если  $d_{_{\mathit{H}}}(\frac{\alpha}{2}) \leq d \leq d_{_{\mathit{B}}}(\frac{\alpha}{2})$ , или  $4-d_{_{\mathit{B}}}(\frac{\alpha}{2}) \leq d \leq 4-d_{_{\mathit{H}}}(\frac{\alpha}{2})$ , неопределенность принятия решений.

При проведении теста на положительную автокорреляцию если  $d < d_{H}(\alpha)$ , автокорреляция есть; если  $d > d_{g}(\alpha)$ , автокорреляции нет;

если  $d_{H}(\alpha) \le d \le d_{e}(\alpha)$ , неопределенность принятия решений.

При проведении теста на отрицательную автокорреляцию если  $d > 4 - d_{_H}(\alpha)$ , автокорреляция есть;

если  $d < 4 - d_{\scriptscriptstyle g}(\alpha)$  , автокорреляции нет;

если  $4 - d_{\scriptscriptstyle B}(\alpha) \le d \le 4 - d_{\scriptscriptstyle H}(\alpha)$ , неопределенность принятия решений.

Желательно обнаружить автокорреляцию, если она есть, чем ошибочно принять нулевую гипотезу. Поэтому часто инклюзивную область (область неопределенности принятия решений) присоединяют к области отклонения нулевой гипотезы, то есть считают, что автокорреляция есть.

Коэффициент парной корреляции:

$$r_{kk'} = \frac{\frac{1}{T} \sum_{t=1}^{T} x_{tk} x_{tk'} - \overline{x}_{k} \overline{x}_{k'}}{S_{k} S_{k'}}$$

$$r_{yx_{k}} = \frac{\frac{1}{T} \sum_{t=1}^{T} y_{t} x_{tk} - \overline{y} \overline{x}_{k}}{S_{y} S_{k}} = \frac{\sum_{t=1}^{T} (x_{tk} - \overline{x}_{k})(y_{t} - \overline{y})}{\sqrt{\sum_{t=1}^{T} (x_{tk} - \overline{x})^{2} \sum_{t} (y_{t} - \overline{y})^{2}}}.$$

При упрощенном анализе на основании коэффициентов парной корреляции можно судить о мультиколлинеарности – наличии тесной линейной связи между регрессорами.

На основании приведенных выше показателей можно проводить эконометрический анализ полученной модели, делать выводы о ее достоверности, о достоверности ее отдельных параметров, обобщении этой модели, причинах отклонений (мультиколлинеароность, автокорреляция, гетероскедастичность). При необходимости применяются другие оценки обобщенной модели: либо модифицируются исходные данные, либо метод наименьших квадратов.

#### Методические указания по выполнению второго задания.

Имеются данные о производстве продукции и затратах ресурсов за десять лет.

Таблица 1

| Годы             | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 |
|------------------|------|------|------|------|------|------|------|------|------|------|
| Выпуск продукции | 4,2  | 5,1  | 6,2  | 7,3  | 8,4  | 9,5  | 10,5 | 11,4 | 12,1 | 12,9 |
| Затраты труда    | 1,7  | 1,9  | 2,2  | 2,5  | 2,9  | 3,2  | 3,5  | 3,7  | 4,0  | 5,2  |
| Затраты фондов   | 4,7  | 5,6  | 6,6  | 7,7  | 8,9  | 9,8  | 11,2 | 12,7 | 13,8 | 15,0 |

Построить производственную функцию и рассчитать ее параметры.

Распространенной производственной функцией, описывающей зависимость между рассмотренными в примере факторами, является функция Кобба-Дугласа.

$$y = a_0 x_1^{a_1} x_2^{a_2}$$

Здесь y обозначает величину выпуска продукции:  $x_1$  - затраты труда;  $x_2$  - объем производственных фондов;  $a_0$ ,  $a_1$ ,  $a_2$  - параметры (постоянные величины).

По своей математической форме это уравнение является степенной функцией. Если вместо переменных величин использовать логарифмы, то функция становится линейной:

$$\ln y = \ln a_0 + a_1 \ln x_1 + a_2 \ln x_2,$$
  

$$y = A_0 + a_1 L + a_2 K$$

где  $y = \ln y$ ,  $A_0 = \ln a_0$ ,  $L = \ln x_1$ ,  $K = \ln x_2$ . Применив метод наименьших квадратов, получим систему уравнений:

$$\begin{cases} mA_0 + a_1 \sum_{i=1}^{m} L_i + a_2 \sum_{i=1}^{m} K_i = \sum_{i=1}^{m} Y_i \\ \sum_{i=1}^{m} L_i A_0 + a_1 \sum_{i=1}^{m} L_i^2 + a_2 \sum_{i=1}^{m} L_i K_i = \sum_{i=1}^{m} L_i Y_i \\ \sum_{i=1}^{m} K_i A_0 + a_1 \sum_{i=1}^{m} L_i K_i + a_2 \sum_{i=1}^{m} K_i^2 = \sum_{i=1}^{m} K_i Y_i \end{cases}$$

Расчеты по формированию системы уравнений приведены в таблице

Таблица 2

| i  | Yi      | Li          | Ki          | $L_i^2$ | K <sub>i</sub> <sup>2</sup> | L <sub>i</sub> K <sub>i</sub> | L <sub>i</sub> Y <sub>i</sub> | K <sub>i</sub> Y <sub>i</sub> |
|----|---------|-------------|-------------|---------|-----------------------------|-------------------------------|-------------------------------|-------------------------------|
|    | (lny)   | $(\ln x_1)$ | $(\ln x_2)$ |         |                             |                               |                               |                               |
| 1  | 1,4351  | 0,5306      | 1,5476      | 0,2816  | 2,3950                      | 0,6211                        | 0,7615                        | 2,2210                        |
| 2  | 1,6292  | 0,6419      | 1,7228      | 0,4120  | 2,9679                      | 1,1058                        | 1,0458                        | 2,8068                        |
| 3  | 1,8245  | 0,7885      | 1,8871      | 0,6217  | 3,5610                      | 1,4880                        | 1,4386                        | 3,4430                        |
| 4  | 1,9879  | 0,9183      | 2,0412      | 0,8396  | 4,1666                      | 1,8704                        | 1,8215                        | 4,0577                        |
| 5  | 2,1282  | 1,0647      | 1,1861      | 1,1336  | 4,7788                      | 2,3275                        | 2,2666                        | 4,6525                        |
| 6  | 2,2513  | 1,1632      | 2,2824      | 1,3529  | 5,2093                      | 2,6549                        | 2,6187                        | 5,1334                        |
| 7  | 2,3514  | 1,2528      | 2,4159      | 1,5694  | 5,8366                      | 3,0267                        | 2,9458                        | 5,6804                        |
| 8  | 2,4336  | 1,3083      | 2,5416      | 1,7117  | 6,4598                      | 2,5416                        | 3,1839                        | 6,1852                        |
| 9  | 2,7932  | 1,3863      | 2,6247      | 1,9218  | 6,8889                      | 3,6386                        | 3,4563                        | 6,5439                        |
| 10 | 2,5572  | 1,6487      | 2,7080      | 2,7181  | 7,3335                      | 4,4648                        | 4,2161                        | 6,9249                        |
| Σ  | 21,0916 | 10,7013     | 21,9574     | 12,5624 | 49,5974                     | 23,7394                       | 23,7548                       | 47,6588                       |

Система уравнений имеет вид:

$$\begin{cases} 10 \ A_0 + 10 \ ,7013 \ a_1 + 21 \ ,9574 \ a_2 = 21 \ ,0916 \\ 10 \ ,7013 \ A_0 + 12 \ ,5624 \ a_1 + 23 \ ,7394 \ a_2 = 23 \ ,7548 \\ 21 \ ,9574 \ A_0 + 23 \ ,7394 \ a_1 + 49 \ ,5974 \ a_2 = 47 \ ,6538 \end{cases}$$

Решив систему, получаем

$$A_0 = 0.2231$$
;  $a_1 = 0.8$ ;  $a_2 = 0.8$ .

$$a_0 = 1,25$$
;  $a_1 = 0,8$ ;  $a_2 = 0,8$ .

Функция имеет вид:

$$y = 1,25 x_1^{0,8} x_2^{0,8}$$

Рассчитаем основные характеристики производственной функции

1) средняя производительность труда:

$$\mu_1 = \frac{y}{x_1} = \frac{1,25 \, x_1^{0,8} x_2^{0,8}}{x_1} = \frac{1,25 \, x_2^{0,8}}{x_1^{0,2}}$$

С увеличением затрат труда (величины  $x_1$ ) средняя производительность труда снижается. Это вызвано тем, что объем производственных фондов остается неизменным. Увеличение же производственных фондов ведет к росту производительности труда.

2) средняя фондоотдача

$$\mu_1 = \frac{y}{x_2} = \frac{1,25 \ x_1^{0,8} x_2^{0,8}}{x_2} = \frac{1,25 \ x_1^{0,8}}{x_2^{0,2}}$$

С увеличением фондов средняя фондоотдача уменьшается. Увеличение ресурсов труда (при неизменных фондах) ведет к росту фондоотдачи.

3) предельная производительность труда

$$v_1 = \frac{\partial y}{\partial x_1} = 1,25 \cdot 0,8 \cdot x_1^{-0,2} \cdot x_2^{0,8}.$$

С увеличением затрат труда при неизменных фондах предельная производительность труда снижается. С увеличением объема фондов при неизменных трудовых ресурсах (т.е. с ростом фондовооруженности труда) предельная производительность труда возрастает. Одновременное изменение обоих переменных может привести к различным результатам.

4) предельная фондоотдача

$$v_2 = \frac{\partial y}{\partial x_2} = 1,25 \cdot 0,8 \cdot x_1^{0,8} \cdot x_2^{-0,2}.$$

С увеличением объема производственных фондов при неизменных трудовых ресурсах предельная фондоотдача снижается. С увеличением объема трудовых ресурсов при неизменных фондах предельная фондоотдача возрастает.

5) эластичность выпуска продукции по затратам труда

$$\varepsilon_1 = \frac{\partial y}{\partial x_1} \cdot \frac{x_1}{y}; \qquad \varepsilon_1 = a_1 = 0.8 \%$$

Данный показатель обозначает, что при увеличении затрат труда на 1% выпуск продукции увеличивается на 0,8%.

6) эластичность выпуска продукции по производственным фондам

$$\varepsilon_2 = \frac{\partial y}{\partial x_2} \cdot \frac{x_2}{y}; \quad \varepsilon_2 = a_2 = 0.8 \%$$

Смысл показателя аналогичен предыдущему.

Производственная функция позволяет рассчитать потребность в одном из ресурсов при заданных объеме и величине другого ресурса. Потребность в ресурсах труда равна:

$$x_{1} = \left\{ \frac{y}{a_{0} x_{2}^{a_{2}}} \right\}^{\frac{1}{a_{1}}} = \left\{ \frac{y}{1,25 x_{2}^{0,8}} \right\}^{\frac{1}{0,8}}$$

Потребность в производственных фондах составляет:

$$x_{2} = \left\{ \frac{y}{a_{0} x_{1}^{a_{1}}} \right\}^{\frac{1}{a_{2}}} = \left\{ \frac{y}{1,25 x_{1}^{0,8}} \right\}^{\frac{1}{0,8}}$$

Производственная функция позволяет исследовать вопросы соотношения, замещения, взаимодействия ресурсов. В частности, на основе соотношения  $\frac{x_2}{x_1}$  определяется важный экономический показатель – фондовооруженность труда:

$$\frac{x_2}{x_1} = a_0^{-\frac{1}{a_2}} \cdot y^{\frac{1}{a_2}} \cdot x_1^{-1 - \frac{a_1}{a_2}} = 1,25^{-\frac{1}{0,8}} \cdot y^{\frac{1}{0,8}} \cdot x_1^{-2}.$$

Взаимодействующие в рамках производственной функции ресурсы могут замещать друг друга. Предельная норма замещения затрат труда производственными фондами в данной задаче равна:

$$h = \frac{\partial x_2}{\partial x_1} = -\frac{a_1 x_2}{a_2 x_1} = -\frac{x_2}{x_1}.$$

Предельная норма замещения, как видно из полученного соотношения, зависит не только от параметров функции (коэффициентов  $a_1$  и  $a_2$ ), но и от соотношения объемов ресурсов. Знак минус означает, что при фиксированном объеме производства увеличение одного ресурса соответствует уменьшению другого, и наоборот.

Влияние соотношения объемов ресурсов на предельную норму замещения находит свое выражение в показателе эластичности замещения ресурсов, который определяется как отношение относительных приращений фондовооруденности труда и предельной нормы замещения ресурсов:

$$\omega = \frac{d(x_2/x_1)}{dh} \cdot \frac{h}{x_2/x_1},$$
где  $h = \frac{\partial x_2}{\partial x_1} = \frac{\partial y/\partial x_1}{\partial y/\partial x_2}$  
$$h = \frac{dx_2(x_1)}{dx_1}$$

Эластичность замещения ресурсов для рассматриваемой функции равна единице, т.е. изменению фондовооруженности труда на 1% соответствует изменение предельной нормы замещения также на 1%.

#### Показатели адекватности классической регрессионной модели

В эмпирических экономических и социальных исследованиях из множества вариантов уравнений, которые отличаются регрессорами -"входящими х-ми", необходимо выбрать наиболее адекватную регрессионную функцию.

Для оценки адекватности функции имеющимся выборочным данным очень часто применяется коэффициент детерминации  $\mathbb{R}^2$ .

а)  $R^2$  - квадрат эмпирического коэффициента корреляции между двумя рядами наблюдений -  $y_t$  (t=1,...T) (теоретическими значениями регрессанда) и  $\hat{y}_t(t=1,...T)$  (его расчетными значениями)

$$R^{2} = \frac{\left[\sum_{t=1}^{T} (y_{t} - \overline{y})(\hat{y}_{t} - \overline{y})\right]^{2}}{\sum_{t=1}^{T} (y_{t} - \overline{y})^{2} \sum_{t=1}^{T} (\hat{y}_{t} - \overline{y})^{2}}$$
(25)

 $0 \le R^2 \le 1,$ 

6) 
$$R^2 = \frac{\sum_{t=1}^{T} (\hat{y}_t - \overline{y})^2}{\sum_{t=1}^{T} (y_t - \overline{y})^2}$$
 (26)

Частное от деления суммы квадратов регрессии около средней на сумму квадратов наблюдаемой совокупности около средней.

B) 
$$R^2 = 1 - \frac{\sum_{t=1}^{T} \hat{u}_t^2}{\sum_{t=1}^{T} (y_t - \overline{y})^2}$$
 (27)

в числителе: сумма квадратов погрешностей

в знаменателе: сумма квадратов совокупности около средней.

Если  $R^2$ =1 - случай полной адекватности, когда все наблюдаемые значения лежат в регрессионной гиперплоскости  $R^2$ =0. Функция регрессии в этом случае ничего не объясняет .

Это возможно при

$$\hat{\beta}_1 = \overline{y}$$
 и  $\hat{\beta}_2 = ... = \hat{\beta}_k = 0$ 
 $\hat{y}_t = \overline{y}$  для всех t.

Регрессионное уравнение оценено тем лучше, чем больше  $R^2$ .

Из двух вариантов регрессионных уравнений, отличающихся регрессорами, лучшим считается тот, у которого  $R^2$  больше (при прочих равных условиях).

### Связь между $R^2$ и количеством регрессоров R.

Если включить в модель дополнительный регрессор (K+1-й), то всегда коэффициент детерминации будет больше

$$R^2(K+1) \ge R^2(K)$$
.

Их разница  $\Delta R^2$  может быть определена после двойного расчета коэффициентов детерминации, однако это вычисление можно упростить.

Частный коэффициент детерминации  $\Delta R_k^2$  показывает предельный (граничный) вклад k-го регрессора в  $R^2$ , или показывает, на какую величину уменьшится коэффициент детерминации, если k-й регрессор (и только он!) будет исключен из группы регрессоров.

$$\Delta R_k^2 = \frac{(1 - R^2)t_k^2}{T - K},\tag{28}$$

где  $t_k = \frac{\hat{\beta}_k}{\hat{\sigma}_{\beta_k}}$  - это t - статистика для k -го регрессионного коэффициента

 $R^2$  – коэффициент детерминации;

Т – число наблюдений;

К – число регрессоров;

Т-К – число степеней свободы.

Увеличение регрессоров приводит к росту  $R^2$ , однако снижает число степеней свободы (T-K), что отрицательно сказывается при применении t – тестов и F – тестов, а также при построении доверительных и прогнозных интервалов.

Поэтому преимущество имеет скорректированный коэффициент детерминации, учитывающий число степеней свободы.

Скорректированный коэффициент детерминации по Тейлору:

$$\overline{R}_{T}^{2} = 1 - (1 - R^{2}) \frac{T - 1}{T - K}.$$
(29)

Скорректированный коэффициент детерминации по Анемии:

$$\overline{R}_{A}^{2} = 1 - (1 - R^{2}) \frac{T + K}{T - K}.$$
(30)

Важное свойство скорректированных коэффициентов детерминации заключается в том, что приращение  $\Delta \overline{R}_{T}^{2}$  и  $\Delta \overline{R}_{A}^{2}$  может оказаться как положительным, так и отрицательным, то есть при отрицательном новая модель с дополнительным регрессором будет хуже, чем модель с меньшим числом регрессоров.

При этом  $\overline{R}_A^2$  изменяется на большую величину, чем  $\overline{R}_T^2$  после включения дополнительного регрессора, значит лучше отражает уменьшение числа степеней свободы.

#### t-тесты, как показатели адекватности модели

 $R^2; \ \overline{R}_T^{\, 2}; \ \overline{R}_A^{\, 2}; \ \Delta R_k^{\, 2}$  - эти критерии относятся к регрессионному уравнению, как к совокупности, то есть к уравнению в целом .

t-тесты и F — тесты используются для проверки гипотез об истинных, но неизвестных значениях отдельных коэффициентов регрессии (или нескольких коэффициентов).

Условия проведения t-теста — наличие классической регрессионной модели с выполнением предпосылки о нормальном распределении:

- а) вектор возмущений  $U := (U_1; U_2; U_T)'$  является t-мерным нормально распределенным с нулевым вектором математического ожидания и единичной ковариационной матрицей  $\sigma_{11}^2$ ;
  - б) регрессионная матрица X детерминирована и имеет полный ранг К.

Такие предпосылки дают возможность посредством t-тестов статистически проверить определенные гипотезы о числовых значениях коэффициентов  $\beta_{\kappa}$  (1  $\leq k \leq K$ ) и о значениях отдельных линейных комбинаций этих коэффициентов.

#### t- тест двусторонней пары гипотез

<u>Вопрос:</u> существенно ли влияет k-й регрессор в генеральной выборке на регрессанд, иначе отличается ли истинное значения коэффициента  $\beta_{\kappa}$  от нуля?

Утверждение, которое статистически должно быть подтверждено тестом, формируется как альтернативная гипотеза.

Двусторонняя альтернативная гипотеза:

 $H_0$  :  $\beta_k = \beta_k^*$ ;

 $H_A$ :  $\beta_k \neq \beta_k^*$ .

Частный случай, когда регрессор не влияет на регрессанд  $\beta_k^* = 0$ .

$$H_A$$
:  $\beta_k \neq 0$ .

Нулевая гипотеза

$$H_0$$
:  $\beta_k = 0$ .

Ошибки первого ряда: нулевая гипотеза отвергается, хотя она верна.

Ошибки второго ряда: нулевая гипотеза не отвергается, хотя она неверна.

Расчетная (или эмпирическая) величина t-статистики:

$$t = \frac{\hat{\beta}_k - \beta_k^*}{\hat{\sigma}_{\hat{\beta}_k}}.$$
 (31)

Если нулевая гипотеза ( $H_0$ :  $\beta_k = \beta_k^*$ ) действительна, то для классической линейной модели рассчитанная по формуле (31) t- статистика является реализацией центральной t- распределенной случайной величины с T-К степенями свободы.

Гипотеза Н<sub>0</sub> отклоняется, если

$$|t| > t (\alpha, T - K),$$

где |t| - абсолютное значение t-статистики,

t ( $\alpha$ , T-K) - табличное значение t- распределения (t- критерия) для уровня значимости  $\alpha$  и T-K степеней свободы.

Иначе

$$P(T \le t(2\alpha, T - K)) = 1 - \alpha. \tag{32}$$

Эта величина называется (1-α) – квантиль t- распределения c (T-K) степенями свободы.

 $\alpha$  - является вероятностью ошибки первого рода, то есть нулевая гипотеза отвергается, хотя она верна.

t- тест односторонней пары гипотез представлен в двух вариантах:

I. 
$$H_0$$
:  $\beta_k \leq \beta_k^*$ ;

$$H_A : \beta_k > \beta_k^*. \tag{33}$$

II. 
$$H_0$$
:  $\beta_k \ge \beta_k^*$ ;

 $H_A$ :  $\beta_k < \beta_k^*$ . (34)

Области принятия гипотез имеют следующие границы:

для первого случая (33),

если  $t \le t$  (2 $\alpha$ , T − K), принимается  $H_0$ ;

если t > t (2 $\alpha$ , T - K), отклоняется  $H_0$ ;

для второго случая (34),

если  $t \ge t$  (2 $\alpha$ , T - K), принимается  $H_0$ ;

если  $t < t (2\alpha, T - K)$ , отклоняется  $H_0$ ;

#### Схема проведения t- теста

Шаг 1: сформулировать пару гипотез H<sub>0</sub> и H<sub>A</sub>.

Шаг 2: выбрать уровень значимости α.

Шаг 3 найти в таблицах t- критерий.

Шаг 4: рассчитать t – статистику.

Шаг 5: сравнить t- рассчетное с t – табличным.

Шаг 6: интерпретировать результат теста.

Чаще всего  $\alpha$ =0,05 или  $\alpha$ =0,01 (иногда его получают расчетным путем, используя компьютерные программы).

### t - тест подтверждает предположение, что $\beta_{\kappa} \neq \beta_{\kappa}^*$

Если  $\beta_{\kappa}^*$ =0, то t - статистика в области отклонения названной гипотезы свидетельствует о том, что к-й регрессор в генеральной совокупности оказывает влияние на регрессанд.

 $\beta_{\kappa}$  (для  $\alpha \!\! = \! \ldots )$  - статистически значимо отличается от нуля.

 $eta_{\mbox{\tiny K}}$  (для lpha=...) - статистически защищено от нуля.

Говорить βк - является значимым неточно, так как статистически незначимое может быть экономически значимым.

В области принятия гипотезы  $H_0$  :  $\beta_k = 0$  — t- тест не позволяет отвергнуть нулевую гипотезу.

Доверительный интервал для регрессионного коэффициента  $\beta_k$  при доверительном уровне 1- $\alpha$  является интервалом со случайно зависимыми границами; он включает (накрывает) истинное значение k-го регрессионного коэффициента с вероятностью 1- $\alpha$ .

Формула доверительного интервала имеет вид:

$$P\left[\hat{\beta}_{k} - t(\alpha, T - K)\hat{\sigma}_{\hat{\beta}_{k}} \leq \beta_{k} \leq \hat{\beta}_{k} + t(\alpha, T - K)\hat{\sigma}_{\hat{\beta}_{k}}\right] = 1 - \alpha. \tag{35}$$

#### F- тест гипотез для групп

#### регрессионных коэффициентов и линейных комбинаций

F - тест также применяется к линейной модели нормальной регрессии.

С помощью F - теста можно проверить только двусторонние гипотезы о значении нескольких коэффициентов или нескольких линейных комбинаций, а также сочетаний того и другого.

t - тест применим только для одного параметра или одной линейной комбинации.

Если применить F - тест для одного параметра, то он дает тот же результат, что и t - тест.

- F тестом статистически проверяется как единое целое (разовой проверкой):
- а) двусторонняя гипотеза о значении одного, двух или нескольких регрессионных коэффициентов (t тест только для одного коэффициента);
- б) двусторонняя гипотеза о значении одной, двух или нескольких линейных комбинаций регрессионных коэффициентов;
- в) совокупность гипотез о значении регрессионных коэффициентов и их линейных комбинаций.

#### Общая линейная гипотеза:

$$H_0: C\beta = C*; \tag{36}$$

 $H_A: C\beta \neq C*$ .

С\* - вектор столбец, состоящий из т элементов

$$C_j^*$$
 (j = 1,2...m)

 $\beta := (\beta_1 \dots \beta_k)'$  - вектор-столбец К регрессионных коэффициентов, подлежащих оцениванию.

C-матрица размерности  $m \times k$ ; m определяет количество строк в матрице C, или m - количество линейных уравнений ( линейных гипотез), проверяемых F - тестом.

а) C=(010) c\*=0

проверит гипотезу  $H_0$ :  $\beta_2 = 0$ ;  $H_A$ :  $\beta_2 \neq 0$ ;

б) 
$$C=(1\ 1\ 0); c*=1$$

проверит гипотезу  $\beta_1 + \beta_2 = 1$ ;

$$\mathbf{B}) \mathbf{c} = \begin{bmatrix} 0 & 10 \\ 1 & 10 \end{bmatrix}; \quad \mathbf{c}^* = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

проверит гипотезы  $\beta_2$ =0 и  $\beta_1$ + $\beta_2$ =1.

Чтобы с помощью F - теста проверить гипотезы, необходимо вычислить Fстатистику по формуле:

$$F = \frac{(C\hat{\beta} - C*)' [C(X'X)^{-1}C']^{-1} (C\hat{\beta} - C*)}{\hat{\sigma}_{m}^{2}}.$$
 (37)

Формула (37) в ряде случаев значительно упрощается.

Проверим гипотезу о том, что ни один регрессор не оказывает влияние на регрессанд:

$$H_0: \beta_2 = \beta_3 = ... = \beta_K = 0;$$

 $H_A: \beta_k \neq 0$ , хотя бы для одного k.

Рассчитываем F-статистику по формуле:

$$F = \frac{R^2}{1 - R^2} \cdot \frac{T - K}{K - 1} \,. \tag{38}$$

Правило применения F-тестов:

Нулевая гипотеза отклоняется, если

$$F > F (1-\alpha; m; T-K),$$

где F – рассчитано по формуле (38);

F (1- $\alpha$ ; m; T-K) — квантиль F — распределения (табличное значение или F — критерий).

$$m = K - 1$$
,

К – число регрессоров, включая свободный член;

Т – К – число степеней свободы;

 $\alpha$  - уровень значимости, который в экономических расчетах часто принимается 0,05; 0,01.

Может оказаться, что F-тест подтвердит статистическую значимость всей совокупности параметров  $\beta$ , в тоже время каждый параметр окажется статистически не значим.

Если F-тест проверяет один коэффициент или одну линейную комбинацию, тогда m=1, рассчетные значения  $F=t^2$ , а табличные значения  $[t(\alpha, T-K)]^2=F$  (1- $\alpha$ ; 1; T-K), то есть результаты F -теста и t-теста совпадают.

Изложенный в данном методическом пособии материал является основой для изучения дальнейших тем курса «Эконометрия», связанных с обобщением классической регрессионной модели, методами оценки параметров в отдельных случаях несостоятельности классической модели, а также практическим применением моделей для экономического анализа, прогнозирования и управления.

#### Список рекомендуемой литературы по курсу «Эконометрия»

- 23. Аллен Р. Математическая эконометрия. М.: Иностранная литература, 1963. 606 с.
- 24.Винн Р., Холден К. Введение в прикладной эконометрический анализ. М.: Финансы и статистика, 1981. –283 с.

- 25. Гранберг А.Г. Статистическое моделирование и прогнозирование. М.: Финансы и статистика, 1990. 378 с.
- 26. Дадаян В.С. Моделирование глобальных экономических процессов. М.: Экономика, 1984. 276 с.
- 27. Джонстон Д. Эконометрические методы. М.: Статистика, 1965. 361 с.
- 28. Дрейпер Н., Смит Г. Прикладной регрессионный анализ. М.: Финансы и статистика, 1986. T1 365., Т. II 379 с.
- 29. Доугерти К. Введение в эконометрику: Пер. с англ. М.: ИНФРА М, 1999.- XIV, 402 с.
- 30. Єлейко В. Основи економетрії: У 2 ч. Львів: ТзОВ «МАРКА Лтд», 1995. 192 с., Ч. 1.
- 31. Кейн Э. Экономическая статистика и эконометрия. Вып. 1, 2 М.: 1977.
- 32.Клас А., Гергели К., Колек Ю., Шуян И. Введение в эконометрическое моделирование. М.: Статистика, 1978.
- 33. Клейнер Г.Б. Производные функции. – М.: Финансы и статистика, 1986. – 221 с.
- 34. Колек Ю., Шуян И. Эконометрические модели в социалистических странах. М.: Экономика, 1978. 151 с.
- 35. Лизер С. Эконометрические методы и задачи. М.: 1971. 247 с.
- 36. Ляшенко И.Н. Макромодели экономического роста. К.: Вища школа. 1979. 151 с.
- 37. Маленко Э. Лекции по микроэкономическому анализу. М.: Наука, 1985. 422 с.
- 38. Маленко Э. Статистические методы эконометрии. М.: Статистика, 1975. 321 с.
- 39. Мартинос С. Методические проблемы построения и применения эконометрических моделей. Вильнюс: Максклас. 1979. 170 с.
- 40.Пирогов Г., Федоровский Ю. Проблемы структурного оценивания в эконометрии. М.: Статистика, 1979.
- 41. Райцин В.Я. Математические методы и модели планирования уровня жизни. М.: Экономика, 1970. 389 с.
- 42. Теория и практика статистического моделирования экономики. (Под редакцией Б.П. Суворова). М.: Финансы и статистика, 1985. 271 с.
- 43. Гинтнер  $\Gamma$ . Введение в эконометрию. М.: Статистика, 1965. 361 с.
- 44.Шаттелес Т. Современные эконометрические методы. М.: Статистика, 1975. 161 с.
- 45. Гинтнер Г. Введение в эконометрию. М.: Статистика, 1964.
- 46. Грубер И. Эконометрия I. Введение во множественную регрессию и эконометрию. 1995. (часть 1, 2).
  - Грубер И. Эконометрия 2. Введение во множественную регрессию и эконометрию. 1995. (часть 3, 4). Перевод г. Киев 1995 г., доцент, к.э.н. А.Б. Воронова.

- 47. Христиановский В.В., Москардини А, Гузь Н.Г., Лаулер К, Кривенчук О.Г. Прикладная эконометрия: Учебное издание / Донецк: Донецкий госуниверситет, 1998, 173 с.
- 48.Гузь Н.Г. Выбор и регулирование в микроэкономике. Донецк: ИЭП НАН Украины, 1997. 195 с.

# ПРИЛОЖЕНИЯ

| Номер | Производитель  | Фондоемкость | Коэффициент  | Удельный вес | Выполнение | Размер   | Среднемесячна | Процент    | Средний  |
|-------|----------------|--------------|--------------|--------------|------------|----------|---------------|------------|----------|
| цеха  | ность труда    | продукции    | текучести    | прогулов     | норм       | премии к | я зарплата    | продукции, | тарифный |
|       | (тыс. грн./чел | (грн.)       | рабочей силы | (%)          | выработки  | зарплате | (грн.)        | сданой без | разряд   |
|       | день)          |              | (%)          |              | (%)        | (коэф.)  |               | доработки  |          |
| 1     | 2550           | 0,0041       | 9,7          | 0,45         | 130,1      | 0,34     | 45            | 96,4       | 4,0      |
| 2     | 2220           | 0,0032       | 15,1         | 0,44         | 127,4      | 0,23     | 48            | 98,9       | 4,0      |
| 3     | 2301           | 0,0030       | 13,2         | 0,92         | 150,6      | 1,26     | 39            | 92,4       | 3,8      |
| 4     | 2454           | 0,0021       | 8,6          | 0,87         | 148,7      | 0,26     | 56            | 94,2       | 3,5      |
| 5     | 1828           | 0,0017       | 22,8         | 1,02         | 139,3      | 0,74     | 40            | 96,8       | 4,2      |
| 6     | 2785           | 0,0016       | 11,8         | 0,62         | 140,6      | 0,46     | 53            | 94,2       | 4,6      |
| 7     | 2460           | 0,0026       | 16,6         | 0,38         | 151,8      | 0,44     | 47            | 98,2       | 5,2      |
| 8     | 1953           | 0,0050       | 14,0         | 1,92         | 187,6      | 0,55     | 45            | 51,8       | 4,3      |
| 9     | 1728           | 0,0030       | 14,2         | 1,12         | 119,4      | 0,65     | 44            | 95,0       | 3,9      |
| 10    | 1080           | 0,0027       | 7,1          | 0,72         | 126,2      | 0,47     | 46            | 98,8       | 4,5      |
| 11    | 975            | 0,0011       | 12,2         | 0,80         | 121,5      | 0,63     | 43            | 94,1       | 3,5      |
| 12    | 1113           | 0,0019       | 9,8          | 0,93         | 130,6      | 0,56     | 37            | 95,2       | 3,8      |
| 13    | 2239           | 0,0052       | 16,8         | 0,27         | 119,8      | 1,10     | 53            | 94,3       | 4,3      |
| 14    | 2740           | 0,0040       | 17,3         | 0,50         | 126,0      | 0,80     | 60            | 97,5       | 4,8      |
| 15    | 2150           | 0,0029       | 14,8         | 0,62         | 130,6      | 1,01     | 61            | 51,2       | 4,2      |

Таблица 2

|             | Объем      | Среднегодовая стоимость основных | Количество  |
|-------------|------------|----------------------------------|-------------|
| Предприятия | продукции  | производственных фондов          | работающих  |
|             | (тыс. грн) | (тыс. грн.)                      | (тыс. чел.) |
| 1           | 5300       | 1530                             | 2,5         |
| 2           | 5480       | 1600                             | 2,8         |
| 3           | 6290       | 1700                             | 2,3         |
| 4           | 6300       | 1790                             | 3,0         |
| 5           | 6150       | 1870                             | 3,1         |
| 6           | 6250       | 1840                             | 2,8         |
| 7           | 6500       | 2020                             | 2,3         |
| 8           | 6480       | 2190                             | 2,4         |
| 9           | 6550       | 2290                             | 2,5         |
| 10          | 7290       | 2480                             | 2,6         |

|                 | Урожайность | Количество органических удобрений | Затраты труда |
|-----------------|-------------|-----------------------------------|---------------|
| Номер хозяйства | (ц/га)      | на 1 га                           | на 1 га       |
|                 |             | (кг)                              | (чел-дн.)     |
| 1               | 18,3        | 92                                | 3,0           |
| 2               | 22,0        | 121                               | 3,1           |
| 3               | 19,4        | 146                               | 2,9           |
| 4               | 24,7        | 175                               | 3,2           |
| 5               | 16,4        | 183                               | 2,8           |
| 6               | 21,9        | 197                               | 3,3           |
| 7               | 18,9        | 208                               | 2,5           |
| 8               | 17,0        | 247                               | 2,2           |
| 9               | 19,3        | 271                               | 2,7           |
| 10              | 24,4        | 285                               | 3,2           |

|            |                | T            |              | ı            | ı             |          | T              |            | таолица т |
|------------|----------------|--------------|--------------|--------------|---------------|----------|----------------|------------|-----------|
| Номер цеха | Производитель  | Фондоемкость | Коэффициент  | Удельный вес | Выполнение    | Размер   | Среднемесячная | Процент    | Средний   |
|            | ность труда    | продукции    | текучести    | прогулов     | норм          | премии к | зарплата       | продукции, | тарифный  |
|            | (тыс. грн./чел | (грн.)       | рабочей силы | (%)          | выработки (%) | зарплате | (грн.)         | сданой без | разряд    |
|            | день)          |              | (%)          |              |               | (коэф.)  |                | доработки  |           |
| 1          | 2481           | 0,0053       | 9,4          | 1,00         | 131,9         | 0,45     | 42             | 90,6       | 4,7       |
| 2          | 2532           | 0,0060       | 8,7          | 0,80         | 145,3         | 0,43     | 46             | 98,4       | 4,9       |
| 3          | 2600           | 0,0063       | 8,3          | 0,95         | 138,0         | 0,37     | 52             | 93,2       | 5,2       |
| 4          | 2620           | 0,0070       | 8,0          | 0,96         | 140,1         | 0,51     | 48             | 90,9       | 5,4       |
| 5          | 2158           | 0,0071       | 8,6          | 0,88         | 135,0         | 0,60     | 36             | 91,3       | 4,0       |
| 6          | 2000           | 0,0045       | 16,8         | 1,01         | 128,0         | 0,40     | 35             | 88,1       | 3,8       |
| 7          | 2780           | 0,0072       | 10,4         | 1,12         | 153,0         | 0,63     | 41             | 70,6       | 4,7       |
| 8          | 1953           | 0,0048       | 15,5         | 0,96         | 123,5         | 0,36     | 39             | 82,3       | 2,9       |
| 9          | 2026           | 0,0049       | 20,4         | 0,78         | 111,0         | 0,38     | 40             | 92,4       | 4,0       |
| 10         | 1897           | 0,0050       | 17,8         | 0,82         | 121,0         | 0,43     | 35             | 95,3       | 3,7       |
| 11         | 1973           | 0,0051       | 15,8         | 1,16         | 128,3         | 0,47     | 45             | 98,0       | 3,5       |
| 12         | 2483           | 0,0071       | 9,6          | 1,09         | 146,2         | 0,53     | 49             | 87,1       | 4,5       |
| 13         | 2556           | 0,0072       | 19,8         | 1,21         | 138,5         | 0,60     | 53             | 90,3       | 4,6       |
| 14         | 2701           | 0,0078       | 12,3         | 1,35         | 153,6         | 0,71     | 52             | 96,9       | 4,1       |
| 15         | 2613           | 0,0070       | 11,1         | 1,15         | 147,3         | 0,62     | 56             | 93,2       | 4,7       |

|             | Объем      | Среднегодовая стоимость основных | Количество  |
|-------------|------------|----------------------------------|-------------|
| Предприятия | продукции  | производственных фондов          | работающих  |
|             | (тыс. грн) | (тыс. грн.)                      | (тыс. чел.) |
| 1           | 7500       | 2600                             | 2,8         |
| 2           | 6450       | 1930                             | 3,2         |
| 3           | 6490       | 2020                             | 3,6         |
| 4           | 7100       | 2420                             | 3,8         |
| 5           | 7250       | 2650                             | 2,9         |
| 6           | 6490       | 2040                             | 3,3         |
| 7           | 6380       | 2010                             | 2,8         |
| 8           | 4970       | 1840                             | 3,1         |
| 9           | 5380       | 1970                             | 3,6         |
| 10          | 650        | 2150                             | 3,7         |

|                 |             |                                   | Тиолпци       |
|-----------------|-------------|-----------------------------------|---------------|
|                 | Урожайность | Количество органических удобрений | Затраты труда |
| Номер хозяйства | (ц/га)      | на 1 га                           | на 1 га       |
|                 |             | (кг)                              | (чел-дн.)     |
| 1               | 22,3        | 330                               | 3,1           |
| 2               | 18,2        | 343                               | 2,8           |
| 3               | 25,4        | 396                               | 3,5           |
| 4               | 23,4        | 412                               | 3,7           |
| 5               | 28,9        | 426                               | 4,0           |
| 6               | 27,3        | 440                               | 3,8           |
| 7               | 24,5        | 458                               | 3,3           |
| 8               | 28,1        | 464                               | 3,9           |
| 9               | 27,5        | 424                               | 3,9           |
| 10              | 29,3        | 395                               | 4,0           |

| Год  | Выпуск<br>продукции | Затраты труда, х <sub>1</sub> |         |      |      |      |      |      |      |     |      |
|------|---------------------|-------------------------------|---------|------|------|------|------|------|------|-----|------|
|      | •                   |                               | ВАРИАНТ |      |      |      |      |      |      |     |      |
|      |                     | 1                             | 2       | 3    | 4    | 5    | 6    | 7    | 8    | 9   | 10   |
| 1    | 2                   | 3                             | 4       | 5    | 6    | 7    | 8    | 9    | 10   | 11  | 12   |
| 1    | 5,3                 | 1,8                           | 1,4     | 2,0  | 1,6  | 2,3  | 1,9  | 2,1  | 1,5  | 2,3 | 2,2  |
| 2    | 6,4                 | 1,9                           | 1,6     | 2,5  | 2,0  | 2,9  | 2,2  | 2,8  | 1,9  | 2,8 | 2,5  |
| 3    | 7,1                 | 2,3                           | 2,5     | 2,8  | 2,4  | 3,2  | 2,6  | 3,4  | 2,2  | 3,1 | 3,1  |
| 4    | 8,0                 | 2,5                           | 2,7     | 3,1  | 3,1  | 3,6  | 3,3  | 3,9  | 2,5  | 3,4 | 3,8  |
| 5    | 9,5                 | 3,1                           | 3,0     | 3,4  | 3,7  | 4,1  | 3,9  | 4,2  | 2,9  | 4,0 | 4,2  |
| 6    | 10,3                | 3,7                           | 3,9     | 4,0  | 4,2  | 4,5  | 4,2  | 4,6  | 3,1  | 4,8 | 4,5  |
| 7    | 11,2                | 4,2                           | 4,3     | 4,6  | 4,8  | 5,2  | 4,8  | 5,1  | 3,4  | 5,2 | 5,0  |
| 8    | 12,6                | 4,5                           | 5,1     | 4,9  | 5,3  | 5,4  | 5,3  | 5,8  | 4,2  | 5,6 | 5,6  |
| 9    | 13,8                | 5,2                           | 5,7     | 5,4  | 5,8  | 6,0  | 5,9  | 6,2  | 4,8  | 6,0 | 6,0  |
| 10   | 14,3                | 5,8                           | 6,2     | 6,3  | 6,4  | 6,6  | 6,5  | 6,7  | 5,6  | 6,4 | 6,4  |
| Данн | ње для прогноза     | 8,5                           | 11,3    | 12,0 | 10,7 | 14,2 | 15,3 | 12,8 | 10,4 | 9,6 | 14,5 |

Таблица 8

| Год        |      |      |      | Затраты | производс | твенных ф | ондов, х2 |      |      |      |
|------------|------|------|------|---------|-----------|-----------|-----------|------|------|------|
|            |      |      |      |         | BAPI      | I A H T   |           |      |      |      |
|            | 1    | 2    | 3    | 4       | 5         | 6         | 7         | 8    | 9    | 10   |
| 1          | 2    | 3    | 4    | 5       | 6         | 7         | 8         | 9    | 10   | 11   |
| 1          | 3,5  | 4,2  | 4,0  | 3,8     | 4,1       | 3,4       | 4,3       | 3,5  | 5,3  | 3,9  |
| 2          | 4,2  | 5,6  | 5,4  | 4,5     | 5,6       | 4,6       | 5,8       | 4,6  | 6,4  | 4,8  |
| 3          | 5,6  | 7,3  | 6,2  | 5,4     | 6,7       | 5,8       | 6,2       | 5,4  | 8,2  | 5,6  |
| 4          | 6,7  | 8,4  | 7,3  | 6,8     | 7,8       | 6,4       | 7,4       | 7,2  | 9,4  | 7,3  |
| 5          | 7,8  | 9,2  | 8,4  | 8,2     | 8,4       | 7,5       | 8,5       | 8,3  | 10,1 | 8,4  |
| 6          | 8,3  | 10,1 | 9,5  | 8,9     | 9,2       | 8,4       | 9,1       | 9,6  | 11,5 | 9,5  |
| 7          | 9,4  | 11,6 | 10,7 | 10,1    | 10,4      | 9,2       | 10,3      | 10,1 | 12,6 | 11,4 |
| 8          | 10,5 | 12,8 | 11,4 | 11,6    | 11,5      | 10,4      | 11,6      | 12,2 | 13,3 | 12,6 |
| 9          | 11,8 | 13,4 | 12,4 | 12,4    | 12,6      | 11,6      | 12,4      | 13,4 | 14,5 | 13,4 |
| 10         | 14,1 | 15,2 | 13,9 | 14,2    | 14,3      | 12,9      | 13,5      | 15,2 | 15,8 | 14,5 |
| Данные для |      |      |      |         |           |           |           |      |      |      |
| прогноза   | 23,6 | 28,5 | 24,7 | 25,6    | 22,4      | 28,2      | 24,3      | 30,2 | 28,5 | 27,6 |

Таблица 9

#### Множественный регрессионный анализ

#### Наблюдения

| Y      | $X_1$ | $X_2$ | $X_3$ |
|--------|-------|-------|-------|
| 539,10 | 10,40 | 2,17  | 20,20 |
| 667,60 | 11,50 | 2,23  | 17,00 |
| 689,00 | 11,20 | 2,31  | 12,50 |
| 779,50 | 13,60 | 2,76  | 17,20 |
| 678,90 | 11,10 | 2,34  | 11,70 |
| 729,70 | 12,20 | 2,86  | 8,80  |
| 644,60 | 14,40 | 2,55  | 11,00 |
| 841,60 | 15,50 | 3,37  | 11,70 |

#### Таблица 10

Уравнение линейной регрессии  $Y = 237,166382 - 2,096547 * X_1 + 194,300415 * X_2 + 1,075840 * X_3$ 

| Коэффициент корреляции                            | R       | 0,85790 |
|---------------------------------------------------|---------|---------|
| Значимость коэффициента корреляции по критерию    | $F_k$   | 3,71689 |
| Фишера                                            |         |         |
| Значимость уравнения регрессии по критерию Фишера | $F_{u}$ | 3,71689 |
| Коэффициент детерминации                          | D       | 0,73599 |
| Скорректированный коэффициент детерминации        | D*      | 0,38397 |
| Коэффициент Дарбина-Уотсона                       | DW      | 1,25056 |

#### Таблица 11

| Переменная | Средние значения | Среднеквадрат. | Коэффициенты вариации |
|------------|------------------|----------------|-----------------------|
|            | переменных       | отклонения     |                       |
| Y          | 696,2500         | 84,9369        | 0,1220                |
| $X_1$      | 12,4875          | 1,6944         | 0,1357                |
| $X_2$      | 2,5738           | 0,3802         | 0,1477                |
| $X_3$      | 13,7625          | 3,6418         | 0,2646                |

| Стандартная о   | шибка парметров регрессии |
|-----------------|---------------------------|
| SE <sub>1</sub> | 903,361                   |
| SE 2            | 9,101                     |
| SE <sub>3</sub> | 200,829                   |
| SE 4            | 0,753                     |

Таблица 13

|                | Коэффициенты Коэффициенты парной<br>эластичности корреляции |                      | Стандартные коэффициенты регрессии |                | Коэффициенты частной детерминации |                |         |
|----------------|-------------------------------------------------------------|----------------------|------------------------------------|----------------|-----------------------------------|----------------|---------|
| E 1            | -0,038                                                      | $R(Y/X_1)$           | 0,7051                             | B <sub>1</sub> | -0,0418                           | D 1            | -0,0401 |
| E <sub>2</sub> | 0,718                                                       | R(Y/X <sub>2</sub> ) | 0,8566                             | В 2            | 0,8698                            | D <sub>2</sub> | 1,0123  |
| E 3            | -0,021                                                      | $R(Y/X_3)$           | -0,4431                            | В 3            | -0,0461                           | D 3            | 0,0278  |

Таблица 14

| Коэффициенты | X 1     | X 2     | X 3     |
|--------------|---------|---------|---------|
| корреляции   |         |         |         |
| X(i)/X(j)    |         |         |         |
| X 1          | 1,0000  | 0,8390  | -0,3726 |
| X 2          | 0,8390  | 1,0000  | -0,4743 |
| X 3          | -0,3726 | -0,4743 | 1,0000  |

Таблица 15

Погрешность корреляции

|               |                 | 1.1         |
|---------------|-----------------|-------------|
| Yn            | Yp              | Yn - Yp     |
| 539,1000      | 615,2622        | -76,1622    |
| 667,6000      | 628,0567        | 39,5433     |
| 689,0000      | 649,0710        | 39,9290     |
| 779,5000      | 726,4180        | 53,0820     |
| 678,9000      | 655,9703        | 22,9297     |
| 729,7000      | 757,8203        | -28,1202    |
| 644,6000      | 690,6079        | -46,0079    |
| 841,6000      | 846,8749        | -5,2750     |
| Средняя ошибы | а аппроксимации | e = 0605956 |