Вариант № 12

Индивидуальные задания:

Модуль №1 Модуль №2 Модуль №3 Модуль №4

Модуль №5 Модуль №6 Модуль №7 Модуль №8

М1. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

Индивидуальные задания к модулю №1:

 

Задание 1.

Даны вершины треугольника А(-2; 1), В(-1; 5), С(3; 1).

                  Сделать чертеж и найти:

1)     периметр треугольника;

2)     уравнение высоты, проведенной через вершину С;

3)     уравнение прямой ЕС, проходящей через точку С и параллельной прямой АВ;

4)     уравнение, биссектрисы AМ, проведенной через вершину A;

5)     угол, который медиана ВМ1, проведенная через вершину В, образует со стороной ВС;

6)     координаты точки К - пересечения высот AH, BL  треугольника АВС;

7)     площадь треугольника АВС;

8)     систему линейных неравенств, определяющих треугольник АВС.

 

Задание 2.

Определить каноническое уравнение кривой и построить кривую второго порядка, если c = 5, и ее асимптота y = 3x/4.

 

 

М2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

Индивидуальные задания к модулю №2

 

Задание 3.  Найти пределы функций не используя правило Лопиталя:

 

Задание 4. Найти производные заданных функций:

 

у = ln(3 + x +) + tg4x

 

Задание 5. Найти пределы функций, используя правило Лопиталя:

 

 

Задание 6.  Вычислить приближенное значение , заменив в в точке х = х0 приращение функции дифференциалом, если n = 3, a = 502,  х0 = 512.

 

Задание 7. Исследовать средствами дифференциального исчисления функцию y = f(x) и построить ее график.

.

Задание 8. Найти экстремум функции двух переменных z = f(x,y):

 

z = 4/x + x/y + y,   x > 0, y > 0.

 

Задание 9. Выполнить лабораторную работу №1.

Цель работы: Нахождение параметров приближенной зависимости между величинами методом наименьших квадратов.

Xi

22

24

29

32,5

36

40

43

47

50

53,5

Yi

15

33

40

35

51

60

77

70

99

105

 

М3. Интегральное исчисление

Индивидуальные задания к модулю №3

a)

 

b).  Проинтегрировать по частям:

 

Задание 11. Вычислить по формуле Ньютона-Лейбница определенный интеграл:

 

Задание 12. Найти площадь фигуры, ограниченной кривой y = ax2 + px + q и прямой y = kx + b:

 

y = -x2 - 4x y = -x - 4

 

Задание 13. Выполнить лабораторную работу №2.

Цель работы: Освоение методов численного интегрирования.

З а д а н и е:

1. Вычислить приближенно, используя методы 2,3,4 по обобщенным

 

    формулам (5), (7), (9) с абсолютной точностью çR(f)ç £ 0,01.

2. Полученные результаты сравнить и сделать выводы.

    Используйте ЭВМ (например, Excel).

3. Постройте графики подынтегральных функций y = f(x).

 

 М4. Дифференциальные уравнения

Индивидуальные задания к модулю №4

 

Задание 14. Найти общее решение дифференциального уравнения a(x)y' + b(x)y = f(x) и частное решение, удовлетворяющее начальному условию y = y0 при x = x0.

,

,

 

Задание 15. Найти общее решение дифференциального уравнения ay" + by' + qy = f(x)  и частное решение, удовлетворяющее начальному условию y = y0, y' = y'0 при x = x0.

1.                  ,

,

2.                ,

,

 

3.  

 

М5. Ряды  и  понятие о сходимости рядов

Индивидуальные задания к модулю №5

 

Задание 16. Выполнить лабораторную работу №3.

Цель работы: Исследование рядов на сходимость. Вычисления суммы ряда.

a). Исследовать на сходимость ряды:

 

 

 

·        издержки по строительству – 200 млн. гр. немедленно;

·        100 млн. гр. в конце каждого из 3-х последующих лет;

·        издержки по эксплуатации  - 5 млн. гр. ежегодно, которые начисляются с конца 4-го года (начало 5-го) и продолжаются с этого времени бессрочно.

Предполагаемый доход – 30 млн. гр. ежегодно, который начинается с конца 4-го года и продолжается с этого времени бессрочно.

Прогнозируемая процентная ставка 6%.  Будет ли проект выгодным?

b). Найти область сходимости степенного ряда и исследовать сходимость на концах интервала: 

Задание 17.

a). Разложить по степеням x в ряд y = f(x). Указать интервал сходимости.

b). Разложить в ряд Маклорена или Тейлора функцию y = f(x) в окрестности х0:

х0 = 2.

 

М6. Линейная алгебра

Индивидуальные задания к модулю №6

 

Задание 18. Выполнить лабораторную работу №4.

Цель работы: Использование теории матриц и определителей для решения задач линейной алгебры.

 З а д а н и е.    1. Решить систему линейных уравнений матричным методом :

2. Проверить, что векторы

 образуют базис в R3, найти координаты вектора b в этом базисе. (Систему

 решать методом Крамера или методом Гаусса).

 

М7. Элементы векторной алгебры

Индивидуальные задания к модулю №7

 

Задание 19. Даны точки A, B, C, D. Положим а = , b =.

A(2,2,-1)

B(0,0,0)

C(0,-4,0)

D(2,0,0)

 

Найти:

1) векторы 2а+b и а-2b;
2) модули векторов |2а+b| и |а-2b|;
3) скалярное произведение (2а+b)×(a-2b);
4) векторное произведение [(2а+b),(a-2b)];
5) угол между векторами (2а+b)×и (a-2b).

 

М8. ГЕОМЕТРИЧЕСКИЕ пространства

Индивидуальные задания к модулю №8

 

Задание 20. Даны четыре точки A, B, C и D:

A(5,-6,0)

B(6,-2,1)

C(-3,4,0)

D(-1,-7,3)

1). Составить уравнение плоскости, проходящей

  • через точку A и имеющей нормальный вектор ;

  • через точки A, B, C.

2). Вычислить расстояние от точки D до плоскости, проходящей через точки A, B, C.

3). Составить канонические и параметрические уравнения прямых, проходящих через точки A и C, а также B и D.

4). Будут ли эти прямые перпендикулярны? Параллельны?